Sparse Sums of Positive Semidefinite Matrices

Many fast graph algorithms begin by preprocessing the graph to improve its sparsity. A common form of this is spectral sparsification, which involves removing and reweighting the edges of the graph while approximately preserving its spectral properties. This task has a more general linear algebraic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on algorithms 2016-02, Vol.12 (1), p.1-17
Hauptverfasser: Silva, Marcel K. De Carli, Harvey, Nicholas J. A., Sato, Cristiane M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many fast graph algorithms begin by preprocessing the graph to improve its sparsity. A common form of this is spectral sparsification, which involves removing and reweighting the edges of the graph while approximately preserving its spectral properties. This task has a more general linear algebraic formulation in terms of approximating sums of rank-one matrices. This article considers a more general task of approximating sums of symmetric, positive semidefinite matrices of arbitrary rank. We present two deterministic, polynomial time algorithms for solving this problem. The first algorithm applies the pessimistic estimators of Wigderson and Xiao, and the second involves an extension of the method of Batson, Spielman, and Srivastava. These algorithms have several applications, including sparsifiers of hypergraphs, sparse solutions to semidefinite programs, sparsifiers of unique games, and graph sparsifiers with various auxiliary constraints.
ISSN:1549-6325
1549-6333
DOI:10.1145/2746241