Defending DDoS Attacks in Software-Defined Networking Based on Legitimate Source and Destination IP Address Database
The availability is an important issue of software-defined networking (SDN). In this paper, the experiments based on a SDN testbed showed that the resource utilization of the data plane and control plane changed drastically when DDoS attacks happened. This is mainly because the DDoS attacks send a l...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Information and Systems 2016/04/01, Vol.E99.D(4), pp.850-859 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The availability is an important issue of software-defined networking (SDN). In this paper, the experiments based on a SDN testbed showed that the resource utilization of the data plane and control plane changed drastically when DDoS attacks happened. This is mainly because the DDoS attacks send a large number of fake flows to network in a short time. Based on the observation and analysis, a DDoS defense mechanism based on legitimate source and destination IP address database is proposed in this paper. Firstly, each flow is abstracted as a source-destination IP address pair and a legitimate source-destination IP address pair database (LSDIAD) is established by historical normal traffic trace. Then the proportion of new source-destination IP address pair in the traffic per unit time is cumulated by non-parametric cumulative sum (CUSUM) algorithm to detect the DDoS attacks quickly and accurately. Based on the alarm from the non-parametric CUSUM, the attack flows will be filtered and redirected to a middle box network for deep analysis via south-bound API of SDN. An on-line updating policy is adopted to keep the LSDIAD timely and accurate. This mechanism is mainly implemented in the controller and the simulation results show that this mechanism can achieve a good performance in protecting SDN from DDoS attacks. |
---|---|
ISSN: | 0916-8532 1745-1361 |
DOI: | 10.1587/transinf.2015ICP0016 |