Measuring the contribution of atmospheric scatter to laser eye dazzle
An experiment has been conducted to determine the contribution of atmospheric scatter to the severity of the dazzle experienced by a human under illumination from a visible laser. A 15 W 532 nm laser was propagated over a 380 m outdoor range in San Antonio, Texas, over nine data collection sessions...
Gespeichert in:
Veröffentlicht in: | Applied Optics 2015-09, Vol.54 (25), p.7567-7574 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An experiment has been conducted to determine the contribution of atmospheric scatter to the severity of the dazzle experienced by a human under illumination from a visible laser. A 15 W 532 nm laser was propagated over a 380 m outdoor range in San Antonio, Texas, over nine data collection sessions spanning June and July 2014. A narrow acceptance angle detector was used to measure scattered laser radiation within the laser beam at different angles from its axis. Atmospheric conditions were logged via a local weather station, and air quality data were taken from a nearby continuous air monitoring station. The measured laser irradiance data showed very little variation across the sessions and a single fitting equation was derived for the atmospheric scatter function. With very conservative estimates of the scatter from the human eye, atmospheric scatter was found to contribute no more than 5% to the overall veiling luminance across the scene for a human observer experiencing laser eye dazzle. It was concluded that atmospheric scatter does not make a significant contribution to laser eye dazzle for short-range laser engagements in atmospheres of good to moderate air quality, which account for 99.5% of conditions in San Antonio, Texas. |
---|---|
ISSN: | 0003-6935 1559-128X 2155-3165 1539-4522 |
DOI: | 10.1364/AO.54.007567 |