Performance of an Inline RZ-DPSK Pulse Compression Using Raman Amplifier and Its Application in OTDM Tributary
We experimentally investigate the performance of a distributed Raman amplifier (DRA)-based pulse compressor for a phase modulated signal. A 10 Gb/s return-to-zero (RZ)-differential phase shift keying (DPSK) signal is compressed to picosecond range after transmission. Pulsewidth is continuously compr...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Electronics 2016/02/01, Vol.E99.C(2), pp.227-234 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We experimentally investigate the performance of a distributed Raman amplifier (DRA)-based pulse compressor for a phase modulated signal. A 10 Gb/s return-to-zero (RZ)-differential phase shift keying (DPSK) signal is compressed to picosecond range after transmission. Pulsewidth is continuously compressed in a wide range from 20 to 3.2 ps by changing the pump power of the DRA while the compressed waveforms are well-matched with sech2 function. Error-free operations at bit-error-rate (BER) of 10-9 are achieved for the compressed signals of various pulsewidths with low power penalties within 2.3 dB compared to the back-to-back. After the compression, the 10 Gb/s signal is used to generate a 40 Gb/s RZ-DPSK optical time division multiplexing (OTDM) signal. This 40 Gb/s OTDM signal is then successfully demultiplexed to 10 Gb/s DPSK signal by using an optical gate based on four-wave mixing (FWM) in a highly nonlinear fiber (HNLF). |
---|---|
ISSN: | 0916-8524 1745-1353 |
DOI: | 10.1587/transele.E99.C.227 |