LHC top partner searches beyond the 2 TeV mass region

A bstract We propose a new search strategy for heavy top partners at the early stages of the LHC run-II, based on lepton-jet final states. Our results show that final states containing a boosted massive jet and a hard lepton, in addition to a top quark and possibly a forward jet, offer a new window...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2015-09, Vol.2015 (9), p.1-54, Article 22
Hauptverfasser: Backović, Mihailo, Flacke, Thomas, Lee, Seung J., Perez, Gilad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract We propose a new search strategy for heavy top partners at the early stages of the LHC run-II, based on lepton-jet final states. Our results show that final states containing a boosted massive jet and a hard lepton, in addition to a top quark and possibly a forward jet, offer a new window to both detecting and measuring top partners of mass ∼ 2TeV. Our resulting signal significance is comparable or superior to the same sign dilepton channels for top partner masses heavier than roughly 1 TeV. Unlike the di-lepton channel, the selection criteria we propose are sensitive both to 5/3 and 1/3 charge top partners and allow for full reconstruction of the resonance mass peak. Our search strategy utilizes a simplified b -tagging procedure and the Template Overlap Method to tag the massive boosted objects and reject the corresponding backgrounds. In addition, we propose a new, pileup insensitive method, to tag forward jets which characterize our signal events. We consider full effects of pileup contamination at 50 interactions per bunch crossing. We demonstrate that even in the most pessimistic pileup scenarios, the significance we obtain is sufficient to claim a discovery over a wide range of top partner parameters. While we focus on the minimal natural composite Higgs model, the results of this paper can be easily translated into bounds on any heavy partner with a t t ¯ W j final state topology.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP09(2015)022