Micropatterned coculture of hepatocytes on electrospun fibers as a potential in vitro model for predictive drug metabolism

The liver is the major organ of importance to determine drug dispositions in the body, thus the development of hepatocyte culture systems is of great scientific and practical interests to provide reliable and predictable models for in vitro drug screening. In the current study, to address the challe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials Science & Engineering C 2016-06, Vol.63, p.475-484
Hauptverfasser: Liu, Yaowen, Wei, Jiaojun, Lu, Jinfu, Lei, Dongmei, Yan, Shili, Li, Xiaohong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The liver is the major organ of importance to determine drug dispositions in the body, thus the development of hepatocyte culture systems is of great scientific and practical interests to provide reliable and predictable models for in vitro drug screening. In the current study, to address the challenges of a rapid function loss of primary hepatocytes, the coculture of hepatocytes with fibroblasts and endothelial cells (Hep-Fib-EC) was established on micropatterned fibrous scaffolds. Liver-specific functions, such as the albumin secretion and urea synthesis, were well maintained in the coculture system, accompanied by a rapid formation of multicellular hepatocyte spheroids. The activities of phase I (CYP3A11 and CYP2C9) and phase II enzymes indicated a gradual increase for cocultured hepatocytes, and a maximum level was achieved after 5days and maintained throughout 15days of culture. The metabolism testing on model drugs indicated that the scaled clearance rates for hepatocytes in the Hep-Fib-EC coculture system were significantly higher than those of other culture methods, and a linear regression analysis indicated good correlations between the observed data of rats and in vitro predicted values during 15days of culture. In addition, the enzyme activities and drug clearance rates of hepatocytes in the Hep-Fib-EC coculture model experienced sensitive responsiveness to the inducers and inhibitors of metabolizing enzymes. These results demonstrated the feasibility of micropatterned coculture of hepatocytes as a potential in vitro testing model for the prediction of in vivo drug metabolism. [Display omitted] •Micropatterned coculture of hepatocytes is established on fibrous scaffolds.•Multicellular hepatocyte spheroids are formed to maintain liver-specific functions.•Activities of metabolizing enzymes are maintained throughout 15days of culture.•In vitro predicting drug clearance rates show good correlations with in vivo data.•Drug-drug interactions exhibit in vivo-in vitro correlations to a certain extent.
ISSN:0928-4931
1873-0191
DOI:10.1016/j.msec.2016.03.025