Facile Formation of High-Quality InGaN/GaN Quantum-Disks-in-Nanowires on Bulk-Metal Substrates for High-Power Light-Emitters
High-quality nitride materials grown on scalable and low-cost metallic substrates are considerably attractive for high-power light-emitters. We demonstrate here, for the first time, the high-power red (705 nm) InGaN/GaN quantum-disks (Qdisks)-in-nanowire light-emitting diodes (LEDs) self-assembled d...
Gespeichert in:
Veröffentlicht in: | Nano letters 2016-02, Vol.16 (2), p.1056-1063 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | High-quality nitride materials grown on scalable and low-cost metallic substrates are considerably attractive for high-power light-emitters. We demonstrate here, for the first time, the high-power red (705 nm) InGaN/GaN quantum-disks (Qdisks)-in-nanowire light-emitting diodes (LEDs) self-assembled directly on metal-substrates. The LEDs exhibited a low turn-on voltage of ∼2 V without efficiency droop up to injection current of 500 mA (1.6 kA/cm2) at ∼5 V. This is achieved through the direct growth and optimization of high-quality nanowires on titanium (Ti) coated bulk polycrystalline-molybdenum (Mo) substrates. We performed extensive studies on the growth mechanisms, obtained high-crystal-quality nanowires, and confirmed the epitaxial relationship between the cubic titanium nitride (TiN) transition layer and the hexagonal nanowires. The growth of nanowires on all-metal stack of TiN/Ti/Mo enables simultaneous implementation of n-metal contact, reflector, and heat sink, which greatly simplifies the fabrication process of high-power light-emitters. Our work ushers in a practical platform for high-power nanowires light-emitters, providing versatile solutions for multiple cross-disciplinary applications that are greatly enhanced by leveraging on the chemical stability of nitride materials, large specific surface of nanowires, chemical lift-off ready layer structures, and reusable Mo substrates. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.5b04190 |