Topological Characterization of Extended Quantum Ising Models
We show that a class of exactly solvable quantum Ising models, including the transverse-field Ising model and anisotropic XY model, can be characterized as the loops in a two-dimensional auxiliary space. The transverse-field Ising model corresponds to a circle and the XY model corresponds to an elli...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2015-10, Vol.115 (17), p.177204-177204, Article 177204 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that a class of exactly solvable quantum Ising models, including the transverse-field Ising model and anisotropic XY model, can be characterized as the loops in a two-dimensional auxiliary space. The transverse-field Ising model corresponds to a circle and the XY model corresponds to an ellipse, while other models yield cardioid, limacon, hypocycloid, and Lissajous curves etc. It is shown that the variation of the ground state energy density, which is a function of the loop, experiences a nonanalytical point when the winding number of the corresponding loop changes. The winding number can serve as a topological quantum number of the quantum phases in the extended quantum Ising model, which sheds some light upon the relation between quantum phase transition and the geometrical order parameter characterizing the phase diagram. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.115.177204 |