Stochastic Forward–Backward Splitting for Monotone Inclusions

We propose and analyze the convergence of a novel stochastic algorithm for monotone inclusions that are sum of a maximal monotone operator and a single-valued cocoercive operator. The algorithm we propose is a natural stochastic extension of the classical forward–backward method. We provide a non-as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications 2016-05, Vol.169 (2), p.388-406
Hauptverfasser: Rosasco, Lorenzo, Villa, Silvia, Vũ, Bang Công
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose and analyze the convergence of a novel stochastic algorithm for monotone inclusions that are sum of a maximal monotone operator and a single-valued cocoercive operator. The algorithm we propose is a natural stochastic extension of the classical forward–backward method. We provide a non-asymptotic error analysis in expectation for the strongly monotone case, as well as almost sure convergence under weaker assumptions. For minimization problems, we recover rates matching those obtained by stochastic extensions of the so-called accelerated methods. Stochastic quasi-Fejér’s sequences are a key technical tool to prove almost sure convergence.
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-016-0893-2