A sufficient local degree condition for Hamiltonicity in locally finite claw-free graphs
Among the well-known sufficient degree conditions for the Hamiltonicity of a finite graph, the condition of Asratian and Khachatrian is the weakest and thus gives the strongest result. Diestel conjectured that it should extend to locally finite infinite graphs G, in that the same condition implies...
Gespeichert in:
Veröffentlicht in: | European journal of combinatorics 2016-07, Vol.55, p.82-99 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Among the well-known sufficient degree conditions for the Hamiltonicity of a finite graph, the condition of Asratian and Khachatrian is the weakest and thus gives the strongest result. Diestel conjectured that it should extend to locally finite infinite graphs G, in that the same condition implies that the Freudenthal compactification of G contains a circle through all its vertices and ends. We prove Diestel’s conjecture for claw-free graphs. |
---|---|
ISSN: | 0195-6698 1095-9971 |
DOI: | 10.1016/j.ejc.2016.01.003 |