A sufficient local degree condition for Hamiltonicity in locally finite claw-free graphs

Among the well-known sufficient degree conditions for the Hamiltonicity of a finite graph, the condition of Asratian and Khachatrian is the weakest and thus gives the strongest result. Diestel conjectured that it should extend to locally finite infinite graphs  G, in that the same condition implies...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of combinatorics 2016-07, Vol.55, p.82-99
1. Verfasser: Heuer, Karl
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Among the well-known sufficient degree conditions for the Hamiltonicity of a finite graph, the condition of Asratian and Khachatrian is the weakest and thus gives the strongest result. Diestel conjectured that it should extend to locally finite infinite graphs  G, in that the same condition implies that the Freudenthal compactification of G contains a circle through all its vertices and ends. We prove Diestel’s conjecture for claw-free graphs.
ISSN:0195-6698
1095-9971
DOI:10.1016/j.ejc.2016.01.003