Fractional nonlinear degenerate diffusion equations on bounded domains part I. Existence, uniqueness and upper bounds
We investigate quantitative properties of nonnegative solutions u(t,x)≥0 to the nonlinear fractional diffusion equation, ∂tu+LF(u)=0 posed in a bounded domain, x∈Ω⊂RN, with appropriate homogeneous Dirichlet boundary conditions. As L we can use a quite general class of linear operators that includes...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2016-01, Vol.131, p.363-398 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate quantitative properties of nonnegative solutions u(t,x)≥0 to the nonlinear fractional diffusion equation, ∂tu+LF(u)=0 posed in a bounded domain, x∈Ω⊂RN, with appropriate homogeneous Dirichlet boundary conditions. As L we can use a quite general class of linear operators that includes the two most common versions of the fractional Laplacian (−Δ)s, 0 |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2015.10.005 |