Fractional nonlinear degenerate diffusion equations on bounded domains part I. Existence, uniqueness and upper bounds

We investigate quantitative properties of nonnegative solutions u(t,x)≥0 to the nonlinear fractional diffusion equation, ∂tu+LF(u)=0 posed in a bounded domain, x∈Ω⊂RN, with appropriate homogeneous Dirichlet boundary conditions. As L we can use a quite general class of linear operators that includes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2016-01, Vol.131, p.363-398
Hauptverfasser: Bonforte, Matteo, Vázquez, Juan Luis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate quantitative properties of nonnegative solutions u(t,x)≥0 to the nonlinear fractional diffusion equation, ∂tu+LF(u)=0 posed in a bounded domain, x∈Ω⊂RN, with appropriate homogeneous Dirichlet boundary conditions. As L we can use a quite general class of linear operators that includes the two most common versions of the fractional Laplacian (−Δ)s, 0
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2015.10.005