Towards optimal edge weight distribution and construction of field‐compatible low‐density parity‐check codes over GF(q)

Non‐binary low‐density parity‐check (NB‐LDPC) codes can be directly constructed by using algebraic methods, or indirectly constructed by mapping well‐designed binary parity‐check matrices to non‐binary parity‐check matrices. Given the Tanner graph (TG) of a NB‐LDPC code, the selection of edge weight...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET communications 2014-12, Vol.8 (18), p.3215-3222
Hauptverfasser: Han, Guojun, Guan, Yong Liang, Kong, Lingjun, Chan, Kheong Sann, Cai, Kui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Non‐binary low‐density parity‐check (NB‐LDPC) codes can be directly constructed by using algebraic methods, or indirectly constructed by mapping well‐designed binary parity‐check matrices to non‐binary parity‐check matrices. Given the Tanner graph (TG) of a NB‐LDPC code, the selection of edge weights in the TG significantly affects the performance of the NB‐LDPC code. The authors introduce an edge weight distribution (EWD) parameter for the TG of NB‐LDPC codes. By utilising particle swarm optimisation (PSO), the EWD is optimised and it has been demonstrated that the optimal EWD approaches a two‐element distribution for large field size and high average variable‐node degree. With the optimised EWD, the authors construct a class of field‐compatible LDPC (FC‐LDPC) codes over GF(q) whose parity‐check matrices only include elements 0, 1 and 2, and can be encoded and decoded over different field sizes. The simulations demonstrate that the performance of the proposed FC‐LDPC codes improves monotonically with increasing field size, and significantly outperforms that of the corresponding algebraic NB‐LDPC codes or NB‐LDPC codes generated with uniform distribution of non‐zero elements over GF(q).
ISSN:1751-8628
1751-8636
1751-8636
DOI:10.1049/iet-com.2014.0216