Formation of three-dimensionally integrated nanocrystalline silicon particles by dip-coating method
Printable technologies using silicon nanoink, in which nanocrystalline silicon (nc-Si) quantum dots are dispersed in solvents, are promising for novel electron and photonic device applications. The dip-coating method is applied for the first time to fabricate three-dimensionally integrated structure...
Gespeichert in:
Veröffentlicht in: | Japanese Journal of Applied Physics 2015-10, Vol.54 (10), p.105001 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Printable technologies using silicon nanoink, in which nanocrystalline silicon (nc-Si) quantum dots are dispersed in solvents, are promising for novel electron and photonic device applications. The dip-coating method is applied for the first time to fabricate three-dimensionally integrated structures of nc-Si quantum dots with a uniform size of 10 nm prepared by the very high frequency plasma decomposition of silane gas. We have clarified the major problem of the dip-coating method, which is the formation of stripe structures. To circumvent this problem, we have proposed two methods: coating onto line-and-space-patterned substrates and utilization of electrophoresis force. We have successfully demonstrated the control of the position and number of layers of nc-Si by using a line-and-space-patterned substrate, however, with a limited shape. We have clarified the conditions of the formation of stripe-free regions by varying applied voltage and nc-Si concentration in the electrophoresis method. |
---|---|
ISSN: | 0021-4922 1347-4065 |
DOI: | 10.7567/JJAP.54.105001 |