Repair of massively defected hemi-joints using demineralized osteoarticular allografts with protected cartilage
Surgical replacement of massively defected joints necessarily relies on osteochondral grafts effective to both of bone and cartilage. Demineralized bone matrix (DBM) retains the osteoconductivity but destroys viable chondrocytes in the cartilage portion essential for successful restoration of defect...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in medicine 2015-08, Vol.26 (8), p.227-10, Article 227 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Surgical replacement of massively defected joints necessarily relies on osteochondral grafts effective to both of bone and cartilage. Demineralized bone matrix (DBM) retains the osteoconductivity but destroys viable chondrocytes in the cartilage portion essential for successful restoration of defected joints. This study prepared osteochondral grafts of DBM with protected cartilage. Protected cartilage portions was characterized by cellular and molecular biology and the grafts were allogenically used for grafting. Protected cartilage showed similar histomorphological structure and protected proteins estimated by total proteins and cartilage specific proteins as in those of fresh controls when DBMs were generated in bone portions. Such grafts were successfully used for simultaneously repair of bone and cartilage in massively defected osteoarticular joints within 16 weeks post-surgery. These results present an allograft with clinical potential for simultaneous restoration of bone and cartilage in defected joints. |
---|---|
ISSN: | 0957-4530 1573-4838 |
DOI: | 10.1007/s10856-015-5557-5 |