Solving for the Fixed Points of 3-Cycle in the Logistic Map and Toward Realizing Chaos by the Theorems of Sharkovskii and Li—Yorke

Sharkovskii proved that, for continuous maps on intervals, the existence of 3-cycle implies the existence of all others. Li and Yorke proved that 3-cycle implies chaos. To establish a domain of uncountable cycles in the logistic map and to understand chaos in it, the fixed points of 3-cycle are obta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in theoretical physics 2014-10, Vol.62 (4), p.485-496
1. Verfasser: Howard Lee, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sharkovskii proved that, for continuous maps on intervals, the existence of 3-cycle implies the existence of all others. Li and Yorke proved that 3-cycle implies chaos. To establish a domain of uncountable cycles in the logistic map and to understand chaos in it, the fixed points of 3-cycle are obtained analytically by solving a sextic equation. At one parametric value, a fixed-point spectrum, resulted from the Sharkovskii limit, helps to realize chaos in the sense of Li and Yorke.
ISSN:0253-6102
1572-9494
DOI:10.1088/0253-6102/62/4/06