Potential-induced degradation of Cu(In,Ga)Se sub(2) photovoltaic modules

Potential-induced degradation (PID) of Cu(In,Ga)Se sub(2)(CIGS) photovoltaic (PV) modules fabricated from integrated submodules is investigated. PID tests were performed by applying a voltage of -1000 V to connected submodule interconnector ribbons at 85 [degrees]C. The normalized energy conversion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japanese Journal of Applied Physics 2015-08, Vol.54 (8)
Hauptverfasser: Yamaguchi, Seira, Jonai, Sachiko, Hara, Kohjiro, Komaki, Hironori, Shimizu-Kamikawa, Yukiko, Shibata, Hajime, Niki, Shigeru, Kawakami, Yuji, Masuda, Atsushi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Potential-induced degradation (PID) of Cu(In,Ga)Se sub(2)(CIGS) photovoltaic (PV) modules fabricated from integrated submodules is investigated. PID tests were performed by applying a voltage of -1000 V to connected submodule interconnector ribbons at 85 [degrees]C. The normalized energy conversion efficiency of a standard module decreases to 0.2 after the PID test for 14 days. This reveals that CIGS modules suffer PID under this experimental condition. In contrast, a module with non-alkali glass shows no degradation, which implies that the degradation occurs owing to alkali metal ions, e.g., Na+, migrating from the cover glass. The results of dynamic secondary ion mass spectrometry show Na accumulation in the n-ZnO transparent conductive oxide layer of the degraded module. A CIGS PV module with an ionomer (IO) encapsulant instead of a copolymer of ethylene and vinyl acetate shows no degradation. This reveals that the IO encapsulant can prevent PID of CIGS modules. A degraded module can recover from its performance losses by applying +1000 V to connected submodule interconnector ribbons from an Al plate placed on the test module.
ISSN:0021-4922
1347-4065
DOI:10.7567/JJAP.54.08KC13