Photoinduced Charge Separation in Molecular Silicon
Interest in molecular silicon semiconductors arises from the properties shared with bulk silicon like earth abundance and the unique architectures accessible from a structure distinctly different than rigid π‐conjugated organic semiconductors. We report ultrafast spectroscopic evidence for direct, p...
Gespeichert in:
Veröffentlicht in: | Chemistry : a European journal 2016-04, Vol.22 (18), p.6204-6207 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Interest in molecular silicon semiconductors arises from the properties shared with bulk silicon like earth abundance and the unique architectures accessible from a structure distinctly different than rigid π‐conjugated organic semiconductors. We report ultrafast spectroscopic evidence for direct, photoinduced charge separation in molecular silicon semiconductors that supports the viability of molecular silicon as donor materials in optoelectronic devices. The materials in this study are σ–π hybrids, in which electron‐deficient aromatic acceptors flank a σ‐conjugated silicon chain. Transient absorption and femtosecond‐stimulated Raman spectroscopy (FSRS) techniques revealed signatures consistent with direct, optical charge transfer from the silane chain to the acceptor; these signatures were only observed by probing excited‐state structure. Our findings suggest new opportunities for controlling charge separation in molecular electronics.
Spectroscopic evidence for direct, photoinduced charge separation in σ–π organosilicon hybrid semiconductors is reported. Spectroscopic signatures of acceptor reduction were only observed by probing excited‐state structure by using a combination of transient absorption and femtosecond‐stimulated Raman spectroscopy (FSRS) techniques. Our insights support the viability of molecular forms of silicon as donor and hole‐transport materials in optoelectronic devices (see scheme). |
---|---|
ISSN: | 0947-6539 1521-3765 |
DOI: | 10.1002/chem.201600846 |