Adaptive informative path planning in metric spaces

In contrast to classic geometric motion planning, informative path planning (IPP) seeks a path for a robot to sense the world and gain information. In adaptive IPP, the robot chooses the next sensing location conditioned on all information acquired so far, and the robot’s goal is to minimize the tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The International journal of robotics research 2016-04, Vol.35 (5), p.585-598
Hauptverfasser: Lim, Zhan Wei, Hsu, David, Lee, Wee Sun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In contrast to classic geometric motion planning, informative path planning (IPP) seeks a path for a robot to sense the world and gain information. In adaptive IPP, the robot chooses the next sensing location conditioned on all information acquired so far, and the robot’s goal is to minimize the travel cost required for identifying a true hypothesis. Adaptive IPP is NP-hard, because the robot must trade-off information gain and travel cost optimally. In this paper we present Recursive Adaptive Identification (RAId), a new polynomial-time approximation algorithm for adaptive IPP. We prove a polylogarithmic approximation bound when the robot travels in a metric space. Furthermore, our experiments suggest that RAId is practical and provides good approximate solutions for two distinct robot planning tasks. Although RAId is designed primarily for noiseless observations, a simple extension allows it to handle some tasks with noisy observations.
ISSN:0278-3649
1741-3176
DOI:10.1177/0278364915596378