Design effects for sample size computation in three-level designs

Experiments with multiple nested levels where randomization can take place at any level bring challenges to the computation of sample sizes. Formulas derived under simple single-level experiments must be adjusted using multiplicative factors or design effects. In this work, we take a unified approac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical methods in medical research 2016-04, Vol.25 (2), p.505-519
Hauptverfasser: Cunningham, Tina D, Johnson, Robert E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 519
container_issue 2
container_start_page 505
container_title Statistical methods in medical research
container_volume 25
creator Cunningham, Tina D
Johnson, Robert E
description Experiments with multiple nested levels where randomization can take place at any level bring challenges to the computation of sample sizes. Formulas derived under simple single-level experiments must be adjusted using multiplicative factors or design effects. In this work, we take a unified approach to finding the design effects in terms of intracluster correlations and present formulas to compute sample sizes of different levels. Equal cluster sample sizes and homogeneous within cluster variances are assumed.
doi_str_mv 10.1177/0962280212460443
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808088755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0962280212460443</sage_id><sourcerecordid>2858330803</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-8684e2a16bdb1fdecfee3ac0ad7bef096fd4aece103ea09d8d374347c3f5eca73</originalsourceid><addsrcrecordid>eNqFkUtLAzEUhYMotlb3riTgxs1oXjPJLEt9QsGNrodMclOnzKMmM4L-elNbFQoiWdzA-c65yb0InVJySamUVyTPGFOEUSYyIgTfQ2MqpEwI52IfjddystZH6CiEJSFEEpEfohHj8ZYqNUbTawjVosXgHJg-YNd5HHSzqgGH6gOw6ZrV0Ou-6lpctbh_8QBJDW9QY_vlDMfowOk6wMm2TtDz7c3T7D6ZP949zKbzxPBc9YnKlACmaVbakjoLxgFwbYi2sgQXX-qs0GCAEg6a5FZZLgUX0nCXgtGST9DFJnflu9cBQl80VTBQ17qFbggFVSQeJdP0f1QqnlNGFIvo-Q667Abfxo8UTKWK8xjKI0U2lPFdCB5csfJVo_17QUmx3kSxu4loOdsGD2UD9sfwPfoIJBsg6AX8dv0z8BMDIo-x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2858330803</pqid></control><display><type>article</type><title>Design effects for sample size computation in three-level designs</title><source>Access via SAGE</source><source>MEDLINE</source><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><creator>Cunningham, Tina D ; Johnson, Robert E</creator><creatorcontrib>Cunningham, Tina D ; Johnson, Robert E</creatorcontrib><description>Experiments with multiple nested levels where randomization can take place at any level bring challenges to the computation of sample sizes. Formulas derived under simple single-level experiments must be adjusted using multiplicative factors or design effects. In this work, we take a unified approach to finding the design effects in terms of intracluster correlations and present formulas to compute sample sizes of different levels. Equal cluster sample sizes and homogeneous within cluster variances are assumed.</description><identifier>ISSN: 0962-2802</identifier><identifier>EISSN: 1477-0334</identifier><identifier>DOI: 10.1177/0962280212460443</identifier><identifier>PMID: 23070588</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Adjustment ; Alcoholism - therapy ; Chronic Disease - prevention &amp; control ; Cluster Analysis ; Clusters ; Computation ; Correlation ; Design factors ; Exercise ; Germany ; Health Promotion ; Humans ; Linear Models ; Randomization ; Randomized Controlled Trials as Topic ; Sample Size ; Samples ; Spain ; Statistical analysis ; Statistical methods ; Virginia</subject><ispartof>Statistical methods in medical research, 2016-04, Vol.25 (2), p.505-519</ispartof><rights>The Author(s) 2012</rights><rights>The Author(s) 2012.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-8684e2a16bdb1fdecfee3ac0ad7bef096fd4aece103ea09d8d374347c3f5eca73</citedby><cites>FETCH-LOGICAL-c398t-8684e2a16bdb1fdecfee3ac0ad7bef096fd4aece103ea09d8d374347c3f5eca73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0962280212460443$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0962280212460443$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,30999,43621,43622</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23070588$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cunningham, Tina D</creatorcontrib><creatorcontrib>Johnson, Robert E</creatorcontrib><title>Design effects for sample size computation in three-level designs</title><title>Statistical methods in medical research</title><addtitle>Stat Methods Med Res</addtitle><description>Experiments with multiple nested levels where randomization can take place at any level bring challenges to the computation of sample sizes. Formulas derived under simple single-level experiments must be adjusted using multiplicative factors or design effects. In this work, we take a unified approach to finding the design effects in terms of intracluster correlations and present formulas to compute sample sizes of different levels. Equal cluster sample sizes and homogeneous within cluster variances are assumed.</description><subject>Adjustment</subject><subject>Alcoholism - therapy</subject><subject>Chronic Disease - prevention &amp; control</subject><subject>Cluster Analysis</subject><subject>Clusters</subject><subject>Computation</subject><subject>Correlation</subject><subject>Design factors</subject><subject>Exercise</subject><subject>Germany</subject><subject>Health Promotion</subject><subject>Humans</subject><subject>Linear Models</subject><subject>Randomization</subject><subject>Randomized Controlled Trials as Topic</subject><subject>Sample Size</subject><subject>Samples</subject><subject>Spain</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Virginia</subject><issn>0962-2802</issn><issn>1477-0334</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>7QJ</sourceid><recordid>eNqFkUtLAzEUhYMotlb3riTgxs1oXjPJLEt9QsGNrodMclOnzKMmM4L-elNbFQoiWdzA-c65yb0InVJySamUVyTPGFOEUSYyIgTfQ2MqpEwI52IfjddystZH6CiEJSFEEpEfohHj8ZYqNUbTawjVosXgHJg-YNd5HHSzqgGH6gOw6ZrV0Ou-6lpctbh_8QBJDW9QY_vlDMfowOk6wMm2TtDz7c3T7D6ZP949zKbzxPBc9YnKlACmaVbakjoLxgFwbYi2sgQXX-qs0GCAEg6a5FZZLgUX0nCXgtGST9DFJnflu9cBQl80VTBQ17qFbggFVSQeJdP0f1QqnlNGFIvo-Q667Abfxo8UTKWK8xjKI0U2lPFdCB5csfJVo_17QUmx3kSxu4loOdsGD2UD9sfwPfoIJBsg6AX8dv0z8BMDIo-x</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Cunningham, Tina D</creator><creator>Johnson, Robert E</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20160401</creationdate><title>Design effects for sample size computation in three-level designs</title><author>Cunningham, Tina D ; Johnson, Robert E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-8684e2a16bdb1fdecfee3ac0ad7bef096fd4aece103ea09d8d374347c3f5eca73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adjustment</topic><topic>Alcoholism - therapy</topic><topic>Chronic Disease - prevention &amp; control</topic><topic>Cluster Analysis</topic><topic>Clusters</topic><topic>Computation</topic><topic>Correlation</topic><topic>Design factors</topic><topic>Exercise</topic><topic>Germany</topic><topic>Health Promotion</topic><topic>Humans</topic><topic>Linear Models</topic><topic>Randomization</topic><topic>Randomized Controlled Trials as Topic</topic><topic>Sample Size</topic><topic>Samples</topic><topic>Spain</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Virginia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cunningham, Tina D</creatorcontrib><creatorcontrib>Johnson, Robert E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Statistical methods in medical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cunningham, Tina D</au><au>Johnson, Robert E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design effects for sample size computation in three-level designs</atitle><jtitle>Statistical methods in medical research</jtitle><addtitle>Stat Methods Med Res</addtitle><date>2016-04-01</date><risdate>2016</risdate><volume>25</volume><issue>2</issue><spage>505</spage><epage>519</epage><pages>505-519</pages><issn>0962-2802</issn><eissn>1477-0334</eissn><abstract>Experiments with multiple nested levels where randomization can take place at any level bring challenges to the computation of sample sizes. Formulas derived under simple single-level experiments must be adjusted using multiplicative factors or design effects. In this work, we take a unified approach to finding the design effects in terms of intracluster correlations and present formulas to compute sample sizes of different levels. Equal cluster sample sizes and homogeneous within cluster variances are assumed.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>23070588</pmid><doi>10.1177/0962280212460443</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0962-2802
ispartof Statistical methods in medical research, 2016-04, Vol.25 (2), p.505-519
issn 0962-2802
1477-0334
language eng
recordid cdi_proquest_miscellaneous_1808088755
source Access via SAGE; MEDLINE; Applied Social Sciences Index & Abstracts (ASSIA)
subjects Adjustment
Alcoholism - therapy
Chronic Disease - prevention & control
Cluster Analysis
Clusters
Computation
Correlation
Design factors
Exercise
Germany
Health Promotion
Humans
Linear Models
Randomization
Randomized Controlled Trials as Topic
Sample Size
Samples
Spain
Statistical analysis
Statistical methods
Virginia
title Design effects for sample size computation in three-level designs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A40%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20effects%20for%20sample%20size%20computation%20in%20three-level%20designs&rft.jtitle=Statistical%20methods%20in%20medical%20research&rft.au=Cunningham,%20Tina%20D&rft.date=2016-04-01&rft.volume=25&rft.issue=2&rft.spage=505&rft.epage=519&rft.pages=505-519&rft.issn=0962-2802&rft.eissn=1477-0334&rft_id=info:doi/10.1177/0962280212460443&rft_dat=%3Cproquest_cross%3E2858330803%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2858330803&rft_id=info:pmid/23070588&rft_sage_id=10.1177_0962280212460443&rfr_iscdi=true