Design effects for sample size computation in three-level designs
Experiments with multiple nested levels where randomization can take place at any level bring challenges to the computation of sample sizes. Formulas derived under simple single-level experiments must be adjusted using multiplicative factors or design effects. In this work, we take a unified approac...
Gespeichert in:
Veröffentlicht in: | Statistical methods in medical research 2016-04, Vol.25 (2), p.505-519 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 519 |
---|---|
container_issue | 2 |
container_start_page | 505 |
container_title | Statistical methods in medical research |
container_volume | 25 |
creator | Cunningham, Tina D Johnson, Robert E |
description | Experiments with multiple nested levels where randomization can take place at any level bring challenges to the computation of sample sizes. Formulas derived under simple single-level experiments must be adjusted using multiplicative factors or design effects. In this work, we take a unified approach to finding the design effects in terms of intracluster correlations and present formulas to compute sample sizes of different levels. Equal cluster sample sizes and homogeneous within cluster variances are assumed. |
doi_str_mv | 10.1177/0962280212460443 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808088755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0962280212460443</sage_id><sourcerecordid>2858330803</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-8684e2a16bdb1fdecfee3ac0ad7bef096fd4aece103ea09d8d374347c3f5eca73</originalsourceid><addsrcrecordid>eNqFkUtLAzEUhYMotlb3riTgxs1oXjPJLEt9QsGNrodMclOnzKMmM4L-elNbFQoiWdzA-c65yb0InVJySamUVyTPGFOEUSYyIgTfQ2MqpEwI52IfjddystZH6CiEJSFEEpEfohHj8ZYqNUbTawjVosXgHJg-YNd5HHSzqgGH6gOw6ZrV0Ou-6lpctbh_8QBJDW9QY_vlDMfowOk6wMm2TtDz7c3T7D6ZP949zKbzxPBc9YnKlACmaVbakjoLxgFwbYi2sgQXX-qs0GCAEg6a5FZZLgUX0nCXgtGST9DFJnflu9cBQl80VTBQ17qFbggFVSQeJdP0f1QqnlNGFIvo-Q667Abfxo8UTKWK8xjKI0U2lPFdCB5csfJVo_17QUmx3kSxu4loOdsGD2UD9sfwPfoIJBsg6AX8dv0z8BMDIo-x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2858330803</pqid></control><display><type>article</type><title>Design effects for sample size computation in three-level designs</title><source>Access via SAGE</source><source>MEDLINE</source><source>Applied Social Sciences Index & Abstracts (ASSIA)</source><creator>Cunningham, Tina D ; Johnson, Robert E</creator><creatorcontrib>Cunningham, Tina D ; Johnson, Robert E</creatorcontrib><description>Experiments with multiple nested levels where randomization can take place at any level bring challenges to the computation of sample sizes. Formulas derived under simple single-level experiments must be adjusted using multiplicative factors or design effects. In this work, we take a unified approach to finding the design effects in terms of intracluster correlations and present formulas to compute sample sizes of different levels. Equal cluster sample sizes and homogeneous within cluster variances are assumed.</description><identifier>ISSN: 0962-2802</identifier><identifier>EISSN: 1477-0334</identifier><identifier>DOI: 10.1177/0962280212460443</identifier><identifier>PMID: 23070588</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Adjustment ; Alcoholism - therapy ; Chronic Disease - prevention & control ; Cluster Analysis ; Clusters ; Computation ; Correlation ; Design factors ; Exercise ; Germany ; Health Promotion ; Humans ; Linear Models ; Randomization ; Randomized Controlled Trials as Topic ; Sample Size ; Samples ; Spain ; Statistical analysis ; Statistical methods ; Virginia</subject><ispartof>Statistical methods in medical research, 2016-04, Vol.25 (2), p.505-519</ispartof><rights>The Author(s) 2012</rights><rights>The Author(s) 2012.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-8684e2a16bdb1fdecfee3ac0ad7bef096fd4aece103ea09d8d374347c3f5eca73</citedby><cites>FETCH-LOGICAL-c398t-8684e2a16bdb1fdecfee3ac0ad7bef096fd4aece103ea09d8d374347c3f5eca73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0962280212460443$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0962280212460443$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,30999,43621,43622</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23070588$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cunningham, Tina D</creatorcontrib><creatorcontrib>Johnson, Robert E</creatorcontrib><title>Design effects for sample size computation in three-level designs</title><title>Statistical methods in medical research</title><addtitle>Stat Methods Med Res</addtitle><description>Experiments with multiple nested levels where randomization can take place at any level bring challenges to the computation of sample sizes. Formulas derived under simple single-level experiments must be adjusted using multiplicative factors or design effects. In this work, we take a unified approach to finding the design effects in terms of intracluster correlations and present formulas to compute sample sizes of different levels. Equal cluster sample sizes and homogeneous within cluster variances are assumed.</description><subject>Adjustment</subject><subject>Alcoholism - therapy</subject><subject>Chronic Disease - prevention & control</subject><subject>Cluster Analysis</subject><subject>Clusters</subject><subject>Computation</subject><subject>Correlation</subject><subject>Design factors</subject><subject>Exercise</subject><subject>Germany</subject><subject>Health Promotion</subject><subject>Humans</subject><subject>Linear Models</subject><subject>Randomization</subject><subject>Randomized Controlled Trials as Topic</subject><subject>Sample Size</subject><subject>Samples</subject><subject>Spain</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Virginia</subject><issn>0962-2802</issn><issn>1477-0334</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>7QJ</sourceid><recordid>eNqFkUtLAzEUhYMotlb3riTgxs1oXjPJLEt9QsGNrodMclOnzKMmM4L-elNbFQoiWdzA-c65yb0InVJySamUVyTPGFOEUSYyIgTfQ2MqpEwI52IfjddystZH6CiEJSFEEpEfohHj8ZYqNUbTawjVosXgHJg-YNd5HHSzqgGH6gOw6ZrV0Ou-6lpctbh_8QBJDW9QY_vlDMfowOk6wMm2TtDz7c3T7D6ZP949zKbzxPBc9YnKlACmaVbakjoLxgFwbYi2sgQXX-qs0GCAEg6a5FZZLgUX0nCXgtGST9DFJnflu9cBQl80VTBQ17qFbggFVSQeJdP0f1QqnlNGFIvo-Q667Abfxo8UTKWK8xjKI0U2lPFdCB5csfJVo_17QUmx3kSxu4loOdsGD2UD9sfwPfoIJBsg6AX8dv0z8BMDIo-x</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Cunningham, Tina D</creator><creator>Johnson, Robert E</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20160401</creationdate><title>Design effects for sample size computation in three-level designs</title><author>Cunningham, Tina D ; Johnson, Robert E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-8684e2a16bdb1fdecfee3ac0ad7bef096fd4aece103ea09d8d374347c3f5eca73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adjustment</topic><topic>Alcoholism - therapy</topic><topic>Chronic Disease - prevention & control</topic><topic>Cluster Analysis</topic><topic>Clusters</topic><topic>Computation</topic><topic>Correlation</topic><topic>Design factors</topic><topic>Exercise</topic><topic>Germany</topic><topic>Health Promotion</topic><topic>Humans</topic><topic>Linear Models</topic><topic>Randomization</topic><topic>Randomized Controlled Trials as Topic</topic><topic>Sample Size</topic><topic>Samples</topic><topic>Spain</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Virginia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cunningham, Tina D</creatorcontrib><creatorcontrib>Johnson, Robert E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index & Abstracts (ASSIA)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Statistical methods in medical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cunningham, Tina D</au><au>Johnson, Robert E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design effects for sample size computation in three-level designs</atitle><jtitle>Statistical methods in medical research</jtitle><addtitle>Stat Methods Med Res</addtitle><date>2016-04-01</date><risdate>2016</risdate><volume>25</volume><issue>2</issue><spage>505</spage><epage>519</epage><pages>505-519</pages><issn>0962-2802</issn><eissn>1477-0334</eissn><abstract>Experiments with multiple nested levels where randomization can take place at any level bring challenges to the computation of sample sizes. Formulas derived under simple single-level experiments must be adjusted using multiplicative factors or design effects. In this work, we take a unified approach to finding the design effects in terms of intracluster correlations and present formulas to compute sample sizes of different levels. Equal cluster sample sizes and homogeneous within cluster variances are assumed.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>23070588</pmid><doi>10.1177/0962280212460443</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-2802 |
ispartof | Statistical methods in medical research, 2016-04, Vol.25 (2), p.505-519 |
issn | 0962-2802 1477-0334 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808088755 |
source | Access via SAGE; MEDLINE; Applied Social Sciences Index & Abstracts (ASSIA) |
subjects | Adjustment Alcoholism - therapy Chronic Disease - prevention & control Cluster Analysis Clusters Computation Correlation Design factors Exercise Germany Health Promotion Humans Linear Models Randomization Randomized Controlled Trials as Topic Sample Size Samples Spain Statistical analysis Statistical methods Virginia |
title | Design effects for sample size computation in three-level designs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A40%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20effects%20for%20sample%20size%20computation%20in%20three-level%20designs&rft.jtitle=Statistical%20methods%20in%20medical%20research&rft.au=Cunningham,%20Tina%20D&rft.date=2016-04-01&rft.volume=25&rft.issue=2&rft.spage=505&rft.epage=519&rft.pages=505-519&rft.issn=0962-2802&rft.eissn=1477-0334&rft_id=info:doi/10.1177/0962280212460443&rft_dat=%3Cproquest_cross%3E2858330803%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2858330803&rft_id=info:pmid/23070588&rft_sage_id=10.1177_0962280212460443&rfr_iscdi=true |