Design effects for sample size computation in three-level designs
Experiments with multiple nested levels where randomization can take place at any level bring challenges to the computation of sample sizes. Formulas derived under simple single-level experiments must be adjusted using multiplicative factors or design effects. In this work, we take a unified approac...
Gespeichert in:
Veröffentlicht in: | Statistical methods in medical research 2016-04, Vol.25 (2), p.505-519 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Experiments with multiple nested levels where randomization can take place at any level bring challenges to the computation of sample sizes. Formulas derived under simple single-level experiments must be adjusted using multiplicative factors or design effects. In this work, we take a unified approach to finding the design effects in terms of intracluster correlations and present formulas to compute sample sizes of different levels. Equal cluster sample sizes and homogeneous within cluster variances are assumed. |
---|---|
ISSN: | 0962-2802 1477-0334 |
DOI: | 10.1177/0962280212460443 |