Investigating the chemical mist deposition technique for poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) on textured crystalline-silicon for organic/crystalline-silicon heterojunction solar cells
Chemical mist deposition (CMD) of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) was investigated in terms of cavitation frequency f, solvent, flow rate of nitrogen, substrate temperature Ts, and substrate dc bias Vs as variables for efficient PEDOT:PSS/crystalline silicon (c-S...
Gespeichert in:
Veröffentlicht in: | Japanese Journal of Applied Physics 2016-03, Vol.55 (3), p.31601 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Chemical mist deposition (CMD) of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) was investigated in terms of cavitation frequency f, solvent, flow rate of nitrogen, substrate temperature Ts, and substrate dc bias Vs as variables for efficient PEDOT:PSS/crystalline silicon (c-Si) heterojunction solar cells. The high-speed-camera and differential mobility analysis characterizations revealed that the average size and flux of PEDOT:PSS mist depend on f, type of solvent, and Vs. Film deposition occurred when positive Vs was applied to the c-Si substrate at Ts of 30-40 °C, whereas no deposition of films occurred with negative Vs, implying that the film is deposited mainly from negatively charged mist. The uniform deposition of PEDOT:PSS films occurred on textured c-Si(100) substrates by adjusting Ts and Vs. The adhesion of CMD PEDOT:PSS film to c-Si was greatly enhanced by applying substrate dc bias Vs compared with that of spin-coated film. The CMD PEDOT:PSS/c-Si heterojunction solar cell devices on textured c-Si(100) in 2 × 2 cm2 exhibited a power conversion efficiency η of 11.0% with better uniformity of the solar cell parameters. Furthermore, η was increased to 12.5% by adding an AR coating layer of molybdenum oxide MoOx formed by CMD. These findings suggest that CMD with negatively charged mist has great potential for the uniform deposition of organic and inorganic materials on textured c-Si substrates by suitably adjusting Ts and Vs. |
---|---|
ISSN: | 0021-4922 1347-4065 |
DOI: | 10.7567/JJAP.55.031601 |