Correlation Length versus Gap in Frustration-Free Systems
Hastings established exponential decay of correlations for ground states of gapped quantum many-body systems. A ground state of a (geometrically) local Hamiltonian with spectral gap ε has correlation length ξ upper bounded as ξ=O(1/ε). In general this bound cannot be improved. Here we study the scal...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2016-03, Vol.116 (9), p.097202-097202, Article 097202 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hastings established exponential decay of correlations for ground states of gapped quantum many-body systems. A ground state of a (geometrically) local Hamiltonian with spectral gap ε has correlation length ξ upper bounded as ξ=O(1/ε). In general this bound cannot be improved. Here we study the scaling of the correlation length as a function of the spectral gap in frustration-free local Hamiltonians, and we prove a tight bound ξ=O(1/sqrt[ε]) in this setting. This highlights a fundamental difference between frustration-free and frustrated systems near criticality. The result is obtained using an improved version of the combinatorial proof of correlation decay due to Aharonov, Arad, Vazirani, and Landau. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.116.097202 |