Impact of persulfate and ultraviolet light activated persulfate pre-oxidation on the formation of trihalomethanes, haloacetonitriles and halonitromethanes from the chlor(am)ination of three antibiotic chloramphenicols

Persulfate oxidation processes, with and without activation using ultraviolet light (respectively UV/PS and PS) have the potential to degrade anthropogenic chemicals in water. However, little is known about the impact of PS or UV/PS pre-oxidation on downstream formation of disinfection by-products (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water research (Oxford) 2016-04, Vol.93, p.48-55
Hauptverfasser: Chu, Wenhai, Chu, Tengfei, Bond, Tom, Du, Erdeng, Guo, Yingqing, Gao, Naiyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Persulfate oxidation processes, with and without activation using ultraviolet light (respectively UV/PS and PS) have the potential to degrade anthropogenic chemicals in water. However, little is known about the impact of PS or UV/PS pre-oxidation on downstream formation of disinfection by-products (DBPs). In this study the three antibiotic chloramphenicols (chloramphenicol and two of its analogues [thiamphenicol and florfenicol], referred to collectively as CAPs), which frequently occur in wastewater-impacted source waters used by drinking water treatment plants, were selected as model antibiotic compounds. The formation of carbonaceous and nitrogenous disinfection by-products, including halomethanes, haloacetonitriles and halonitromethanes, during chlorination and chloramination preceded by PS and UV/PS was investigated. No significant concentrations of haloacetonitriles and halonitromethanes were detected during chlorination. During chloramination chloramphenicol formed a considerable amount of dichloronitromethane (e.g., 3.44 ± 0.33% mol/mol at NH2Cl dose = 1 mM) and trichloronitromethane (e.g., 0.79 ± 0.07% mol/mol at NH2Cl dose = 1 mM), compared with THM and HAN formation. PS pre-oxidation achieved a statistically significant reduction in trichloromethane formation from chlorination, and in HAN and HNM formation from chloramination. Although UV/PS slightly increased dichloroacetonitrile formation during chloramination, it significantly decreased dichloronitromethane and trichloronitromethane formation during chloramination. Overall, the use of PS and UV/PS has the potential to have contrasting impacts on DBP formation in heavily wastewater-impacted waters, depending on the disinfection method. Hence, their application needs to be carefully balanced against the downstream effect on DBP formation. [Display omitted] •NH2Cl supplied the nitrogen for DCAN formation from three chloramphenicols.•Two HNMs and DCAN were formed from chloramination of CAP, but not for chlorination.•PS pre-oxidation reduced N-DBP formation, but not for TCM from CAP chloramination.•UV/PS minimized CAP, and reduced THM and HNM formation during chloramination.
ISSN:0043-1354
1879-2448
DOI:10.1016/j.watres.2016.02.013