Cylindricity of complete Euclidean submanifolds with relative nullity

We show that a complete Euclidean submanifold with minimal index of relative nullity ν 0 > 0 and Ricci curvature with a certain controlled decay must be a ν 0 -cylinder. This is an extension of the classical Hartman cylindricity theorem.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of global analysis and geometry 2016-04, Vol.49 (3), p.253-257
Hauptverfasser: Guimarães, Felippe Soares, de Freitas, Guilherme Machado
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that a complete Euclidean submanifold with minimal index of relative nullity ν 0 > 0 and Ricci curvature with a certain controlled decay must be a ν 0 -cylinder. This is an extension of the classical Hartman cylindricity theorem.
ISSN:0232-704X
1572-9060
DOI:10.1007/s10455-015-9490-0