Label-free and ratiometric detection of nuclei acids based on graphene quantum dots utilizing cascade amplification by nicking endonuclease and catalytic G-quadruplex DNAzyme

Herein, we report a ratiometric fluorescence assay based on graphene quantum dots (GQDs) for the ultrasensitive DNA detection by coupling the nicking endonuclease assisted target recycling and the G-quadruplex/hemin DNAzyme biocatalysis for cascade signal amplifications. With o-phenylenediamine acte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics 2016-07, Vol.81, p.214-220
Hauptverfasser: Wang, Guang-Li, Fang, Xin, Wu, Xiu-Ming, Hu, Xue-Lian, Li, Zai-Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Herein, we report a ratiometric fluorescence assay based on graphene quantum dots (GQDs) for the ultrasensitive DNA detection by coupling the nicking endonuclease assisted target recycling and the G-quadruplex/hemin DNAzyme biocatalysis for cascade signal amplifications. With o-phenylenediamine acted as the substrate of G-quadruplex/hemin DNAzyme, whose oxidization product (that is, 2,3-diaminophenazine, DAP) quenched the fluorescence intensity of GQDs (at 460nm) obviously, accompanied with the emergence of a new emission of DAP (at 564nm). The ratiometric signal variations at the emission wavelengths of 564 and 460nm (I564/I460) were utilized for label-free, sensitive, and selective detection of target DNA. Utilizing the nicking endonuclease assisted target recycling and the G-quadruplex/hemin DNAzyme biocatalysis for amplified cascade generation of DAP, the proposed bioassay exhibited high sensitivity toward target DNA with a detection limit of 30fM. The method also had additional advantages such as facile preparation and easy operation. •The first graphene quantum dots (GQDs)-based ratiometric FL assay for DNA.•Synthesis of GQDs with superior FL property.•Dual signal amplification by nicking endonuclease and DNAzyme.•The method has ultra-sensitivity and good selectivity.
ISSN:0956-5663
1873-4235
DOI:10.1016/j.bios.2016.02.038