An efficient Haar wavelet collocation method for the numerical solution of multi-term fractional differential equations

In the numerical analysis, Wavelets play an important role in the solution of differential equations. In this paper, we apply the Haar wavelet collocation method (HWCM) for solving multi-term fractional differential equations (FDEs) using the fractional order operational matrix of integration. The p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2016, Vol.83 (1-2), p.293-303
Hauptverfasser: Shiralashetti, S. C., Deshi, A. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the numerical analysis, Wavelets play an important role in the solution of differential equations. In this paper, we apply the Haar wavelet collocation method (HWCM) for solving multi-term fractional differential equations (FDEs) using the fractional order operational matrix of integration. The present study is illustrated by exploring different kinds of FDEs that gives the approximate solution is good agreement with the exact solution than the Haar wavelet-based method presented by Li and Zhao (Appl Math Comput 216:2276–2285, 2010 ) and other methods by Ford and Connolly (J Comput Appl Math 229:382–391, 2009 ), El-Sayed et al. (Appl Math Comput 60:788–797, 2010 ). The error will be reduced by increasing the number of collocation points, which has been justified through the examples.
ISSN:0924-090X
1573-269X
DOI:10.1007/s11071-015-2326-4