Nonlinear vibration of the bevel gear with teeth profile modification
The prediction of gear vibration and noise has always been a major concern in gear design. Noise and vibration are inevitable problems that are involved in transmission systems; they have intensified when some nonlinear phenomena such as jump phenomenon, tooth separation and period-doubling bifurcat...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2016-03, Vol.83 (4), p.1875-1884 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The prediction of gear vibration and noise has always been a major concern in gear design. Noise and vibration are inevitable problems that are involved in transmission systems; they have intensified when some nonlinear phenomena such as jump phenomenon, tooth separation and period-doubling bifurcation appear in the system. Tip and/or root modifications are well-known solutions that improve dynamic performance of gears. The present work investigates the complex, nonlinear dynamic behavior of three bevel gear models: (1) model with pure involute profile, (2) model with statically optimized tooth profile, and (3) model with dynamically optimized tooth profile. Tooth profile modification is employed in models by means of genetic algorithm in order to extract the best amount and length of modifications. The dynamic responses obtained from dynamic analyzer were compared qualitatively and quantitatively. By augmenting tooth profile modification, the average value of the dynamic responses is decreased intensely for both statically and dynamically optimized gear pairs. Dynamic load factor is calculated and compared with the involute tooth profile model and the two optimized gear sets. Employing teeth optimization leads to elimination of period-
2
T
m
in both optimized simulations. |
---|---|
ISSN: | 0924-090X 1573-269X |
DOI: | 10.1007/s11071-015-2452-z |