Electrochemical detection of DNA binding by tumor suppressor p53 protein using osmium-labeled oligonucleotide probes and catalytic hydrogen evolution at the mercury electrode

In this paper, we present an electrochemical DNA–protein interaction assay based on a combination of protein-specific immunoprecipitation at magnetic beads (MBIP) with application of oligonucleotide (ON) probes labeled with an electroactive oxoosmium complex (Os,bipy). We show that double-stranded O...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical and bioanalytical chemistry 2014-09, Vol.406 (24), p.5843-5852
Hauptverfasser: Němcová, Kateřina, Šebest, Peter, Havran, Luděk, Orság, Petr, Fojta, Miroslav, Pivoňková, Hana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present an electrochemical DNA–protein interaction assay based on a combination of protein-specific immunoprecipitation at magnetic beads (MBIP) with application of oligonucleotide (ON) probes labeled with an electroactive oxoosmium complex (Os,bipy). We show that double-stranded ONs bearing a dT 20 tail labeled with Os,bipy are specifically recognized by the tumor suppressor p53 protein according to the presence or absence of a specific binding site (p53CON) in the double-stranded segment. We demonstrate the applicability of the Os,bipy-labeled probes in titration as well as competition MBIP assays to evaluate p53 relative affinity to various sequence-specific or structurally distinct unlabeled DNA substrates upon modulation of the p53-DNA binding by monoclonal antibodies used for the immunoprecipitation. To detect the p53-bound osmium-labeled probes, we took advantage of a catalytic peak yielded by Os,bipy-modified DNA at the mercury-based electrodes, allowing facile determination of subnanogram quantities of the labeled oligonucleotides. Versatility of the electrochemical MBIP technique and its general applicability in studies of any DNA-binding protein is discussed. Figure ᅟ
ISSN:1618-2642
1618-2650
DOI:10.1007/s00216-014-7996-0