Flexible fuel cell using stiffness-controlled endplate

We investigate the use of stiffness-controlled polydimethylsiloxane (PDMS) endplates with Young's modulus of 7.50 × 105 Pa and 8.68 × 105 Pa for improving the performance of flexible fuel cells. The maximum power densities of stacks with PDMS endplates with Young's modulus of 7.50 × 105 Pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of hydrogen energy 2016-04, Vol.41 (14), p.6013-6019
Hauptverfasser: Chang, Ikwhang, Park, Taehyun, Lee, Jinhwan, Lee, Ha Beom, Ko, Seung Hwan, Cha, Suk Won
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6019
container_issue 14
container_start_page 6013
container_title International journal of hydrogen energy
container_volume 41
creator Chang, Ikwhang
Park, Taehyun
Lee, Jinhwan
Lee, Ha Beom
Ko, Seung Hwan
Cha, Suk Won
description We investigate the use of stiffness-controlled polydimethylsiloxane (PDMS) endplates with Young's modulus of 7.50 × 105 Pa and 8.68 × 105 Pa for improving the performance of flexible fuel cells. The maximum power densities of stacks with PDMS endplates with Young's modulus of 7.50 × 105 Pa and 8.68 × 105 Pa are 82 mWcm−2 and 117 mWcm−2, respectively. The flexible fuel cells produce a maximum absolute power of 1.053 W (i.e., the power density is 117 mWcm2) under a bending radius of 15 cm. Interestingly, their impedance spectra reveal that the ohmic and faradaic resistances decrease under the bent condition. Furthermore, the decreased resistance and corresponding performance enhancement are due to the increased compressive force normal to the membrane electrode assembly, which is investigated using a finite element method of stress distribution within the flexible fuel cells. As our experiments show, the faradaic impedance decreases significantly because the bending radius decreases from 36 cm to 15 cm. •We propose a novel assembly concept for bendable fuel cell.•The best performance ever reported in terms of power density (117 mWcm−2).•We validated the variations of internal stresses by calculations and experiments.
doi_str_mv 10.1016/j.ijhydene.2016.02.087
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808070059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319915318668</els_id><sourcerecordid>1808070059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-d9c3ff4999f3f560e0cdb6ec6f40ac82026ea0cf4c06b86587d1434eb92be2dc3</originalsourceid><addsrcrecordid>eNqFkEFLxDAUhIMouK7-BenRS-tLmqbJTVlcFRa86Dm0yYumZNs1acX993ZZPXsaHswMbz5CrikUFKi47Qrffewt9liw-S6AFSDrE7KgslZ5yWV9ShZQCshLqtQ5uUipA6A1cLUgYh3w27cBMzdhyAyGkE3J9-9ZGr1zPaaUm6Ef4xAC2gx7uwvNiJfkzDUh4dWvLsnb-uF19ZRvXh6fV_eb3FRMjLlVpnSOK6Vc6SoBCMa2Ao1wHBojGTCBDRjHDYhWikrWlvKSY6tYi8yacklujr27OHxOmEa99enwZNPjMCVNJUioASo1W8XRauKQUkSnd9Fvm7jXFPQBlO70Hyh9AKWB6RnUHLw7BnEe8uUx6mQ89gatj2hGbQf_X8UP7w51vQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808070059</pqid></control><display><type>article</type><title>Flexible fuel cell using stiffness-controlled endplate</title><source>Elsevier ScienceDirect Journals</source><creator>Chang, Ikwhang ; Park, Taehyun ; Lee, Jinhwan ; Lee, Ha Beom ; Ko, Seung Hwan ; Cha, Suk Won</creator><creatorcontrib>Chang, Ikwhang ; Park, Taehyun ; Lee, Jinhwan ; Lee, Ha Beom ; Ko, Seung Hwan ; Cha, Suk Won</creatorcontrib><description>We investigate the use of stiffness-controlled polydimethylsiloxane (PDMS) endplates with Young's modulus of 7.50 × 105 Pa and 8.68 × 105 Pa for improving the performance of flexible fuel cells. The maximum power densities of stacks with PDMS endplates with Young's modulus of 7.50 × 105 Pa and 8.68 × 105 Pa are 82 mWcm−2 and 117 mWcm−2, respectively. The flexible fuel cells produce a maximum absolute power of 1.053 W (i.e., the power density is 117 mWcm2) under a bending radius of 15 cm. Interestingly, their impedance spectra reveal that the ohmic and faradaic resistances decrease under the bent condition. Furthermore, the decreased resistance and corresponding performance enhancement are due to the increased compressive force normal to the membrane electrode assembly, which is investigated using a finite element method of stress distribution within the flexible fuel cells. As our experiments show, the faradaic impedance decreases significantly because the bending radius decreases from 36 cm to 15 cm. •We propose a novel assembly concept for bendable fuel cell.•The best performance ever reported in terms of power density (117 mWcm−2).•We validated the variations of internal stresses by calculations and experiments.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2016.02.087</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Bendable ; Bending ; Electrodes ; Endplate ; Flexible ; Fuel cell ; Fuel cells ; Impedance ; Modulus of elasticity ; Ohmic ; Performance enhancement ; Polymer electrolyte fuel cell ; Silicone resins ; Stiffness</subject><ispartof>International journal of hydrogen energy, 2016-04, Vol.41 (14), p.6013-6019</ispartof><rights>2016 Hydrogen Energy Publications, LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-d9c3ff4999f3f560e0cdb6ec6f40ac82026ea0cf4c06b86587d1434eb92be2dc3</citedby><cites>FETCH-LOGICAL-c526t-d9c3ff4999f3f560e0cdb6ec6f40ac82026ea0cf4c06b86587d1434eb92be2dc3</cites><orcidid>0000-0002-7477-0820</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360319915318668$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Chang, Ikwhang</creatorcontrib><creatorcontrib>Park, Taehyun</creatorcontrib><creatorcontrib>Lee, Jinhwan</creatorcontrib><creatorcontrib>Lee, Ha Beom</creatorcontrib><creatorcontrib>Ko, Seung Hwan</creatorcontrib><creatorcontrib>Cha, Suk Won</creatorcontrib><title>Flexible fuel cell using stiffness-controlled endplate</title><title>International journal of hydrogen energy</title><description>We investigate the use of stiffness-controlled polydimethylsiloxane (PDMS) endplates with Young's modulus of 7.50 × 105 Pa and 8.68 × 105 Pa for improving the performance of flexible fuel cells. The maximum power densities of stacks with PDMS endplates with Young's modulus of 7.50 × 105 Pa and 8.68 × 105 Pa are 82 mWcm−2 and 117 mWcm−2, respectively. The flexible fuel cells produce a maximum absolute power of 1.053 W (i.e., the power density is 117 mWcm2) under a bending radius of 15 cm. Interestingly, their impedance spectra reveal that the ohmic and faradaic resistances decrease under the bent condition. Furthermore, the decreased resistance and corresponding performance enhancement are due to the increased compressive force normal to the membrane electrode assembly, which is investigated using a finite element method of stress distribution within the flexible fuel cells. As our experiments show, the faradaic impedance decreases significantly because the bending radius decreases from 36 cm to 15 cm. •We propose a novel assembly concept for bendable fuel cell.•The best performance ever reported in terms of power density (117 mWcm−2).•We validated the variations of internal stresses by calculations and experiments.</description><subject>Bendable</subject><subject>Bending</subject><subject>Electrodes</subject><subject>Endplate</subject><subject>Flexible</subject><subject>Fuel cell</subject><subject>Fuel cells</subject><subject>Impedance</subject><subject>Modulus of elasticity</subject><subject>Ohmic</subject><subject>Performance enhancement</subject><subject>Polymer electrolyte fuel cell</subject><subject>Silicone resins</subject><subject>Stiffness</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLxDAUhIMouK7-BenRS-tLmqbJTVlcFRa86Dm0yYumZNs1acX993ZZPXsaHswMbz5CrikUFKi47Qrffewt9liw-S6AFSDrE7KgslZ5yWV9ShZQCshLqtQ5uUipA6A1cLUgYh3w27cBMzdhyAyGkE3J9-9ZGr1zPaaUm6Ef4xAC2gx7uwvNiJfkzDUh4dWvLsnb-uF19ZRvXh6fV_eb3FRMjLlVpnSOK6Vc6SoBCMa2Ao1wHBojGTCBDRjHDYhWikrWlvKSY6tYi8yacklujr27OHxOmEa99enwZNPjMCVNJUioASo1W8XRauKQUkSnd9Fvm7jXFPQBlO70Hyh9AKWB6RnUHLw7BnEe8uUx6mQ89gatj2hGbQf_X8UP7w51vQ</recordid><startdate>20160420</startdate><enddate>20160420</enddate><creator>Chang, Ikwhang</creator><creator>Park, Taehyun</creator><creator>Lee, Jinhwan</creator><creator>Lee, Ha Beom</creator><creator>Ko, Seung Hwan</creator><creator>Cha, Suk Won</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7477-0820</orcidid></search><sort><creationdate>20160420</creationdate><title>Flexible fuel cell using stiffness-controlled endplate</title><author>Chang, Ikwhang ; Park, Taehyun ; Lee, Jinhwan ; Lee, Ha Beom ; Ko, Seung Hwan ; Cha, Suk Won</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-d9c3ff4999f3f560e0cdb6ec6f40ac82026ea0cf4c06b86587d1434eb92be2dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bendable</topic><topic>Bending</topic><topic>Electrodes</topic><topic>Endplate</topic><topic>Flexible</topic><topic>Fuel cell</topic><topic>Fuel cells</topic><topic>Impedance</topic><topic>Modulus of elasticity</topic><topic>Ohmic</topic><topic>Performance enhancement</topic><topic>Polymer electrolyte fuel cell</topic><topic>Silicone resins</topic><topic>Stiffness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Ikwhang</creatorcontrib><creatorcontrib>Park, Taehyun</creatorcontrib><creatorcontrib>Lee, Jinhwan</creatorcontrib><creatorcontrib>Lee, Ha Beom</creatorcontrib><creatorcontrib>Ko, Seung Hwan</creatorcontrib><creatorcontrib>Cha, Suk Won</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Ikwhang</au><au>Park, Taehyun</au><au>Lee, Jinhwan</au><au>Lee, Ha Beom</au><au>Ko, Seung Hwan</au><au>Cha, Suk Won</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexible fuel cell using stiffness-controlled endplate</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2016-04-20</date><risdate>2016</risdate><volume>41</volume><issue>14</issue><spage>6013</spage><epage>6019</epage><pages>6013-6019</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><abstract>We investigate the use of stiffness-controlled polydimethylsiloxane (PDMS) endplates with Young's modulus of 7.50 × 105 Pa and 8.68 × 105 Pa for improving the performance of flexible fuel cells. The maximum power densities of stacks with PDMS endplates with Young's modulus of 7.50 × 105 Pa and 8.68 × 105 Pa are 82 mWcm−2 and 117 mWcm−2, respectively. The flexible fuel cells produce a maximum absolute power of 1.053 W (i.e., the power density is 117 mWcm2) under a bending radius of 15 cm. Interestingly, their impedance spectra reveal that the ohmic and faradaic resistances decrease under the bent condition. Furthermore, the decreased resistance and corresponding performance enhancement are due to the increased compressive force normal to the membrane electrode assembly, which is investigated using a finite element method of stress distribution within the flexible fuel cells. As our experiments show, the faradaic impedance decreases significantly because the bending radius decreases from 36 cm to 15 cm. •We propose a novel assembly concept for bendable fuel cell.•The best performance ever reported in terms of power density (117 mWcm−2).•We validated the variations of internal stresses by calculations and experiments.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2016.02.087</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7477-0820</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0360-3199
ispartof International journal of hydrogen energy, 2016-04, Vol.41 (14), p.6013-6019
issn 0360-3199
1879-3487
language eng
recordid cdi_proquest_miscellaneous_1808070059
source Elsevier ScienceDirect Journals
subjects Bendable
Bending
Electrodes
Endplate
Flexible
Fuel cell
Fuel cells
Impedance
Modulus of elasticity
Ohmic
Performance enhancement
Polymer electrolyte fuel cell
Silicone resins
Stiffness
title Flexible fuel cell using stiffness-controlled endplate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T20%3A17%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexible%20fuel%20cell%20using%20stiffness-controlled%20endplate&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Chang,%20Ikwhang&rft.date=2016-04-20&rft.volume=41&rft.issue=14&rft.spage=6013&rft.epage=6019&rft.pages=6013-6019&rft.issn=0360-3199&rft.eissn=1879-3487&rft_id=info:doi/10.1016/j.ijhydene.2016.02.087&rft_dat=%3Cproquest_cross%3E1808070059%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808070059&rft_id=info:pmid/&rft_els_id=S0360319915318668&rfr_iscdi=true