Liouville theorem for elliptic equations with mixed boundary value conditions and finite Morse indices

In this paper, we establish Liouville type theorem for boundedness solutions with finite Morse index of the following mixed boundary value problems: − Δ u = | u | p − 1 u in R + N , ∂ u ∂ ν = | u | q − 1 u on Γ 1 , ∂ u ∂ ν = 0 on Γ 0 , and − Δ u = | u | p − 1 u in R + N , ∂ u ∂ ν = | u | q − 1 u on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of inequalities and applications 2015-11, Vol.2015 (1), p.1-8, Article 351
Hauptverfasser: Wang, Xueqiao, Zheng, Xiongjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we establish Liouville type theorem for boundedness solutions with finite Morse index of the following mixed boundary value problems: − Δ u = | u | p − 1 u in R + N , ∂ u ∂ ν = | u | q − 1 u on Γ 1 , ∂ u ∂ ν = 0 on Γ 0 , and − Δ u = | u | p − 1 u in R + N , ∂ u ∂ ν = | u | q − 1 u on Γ 1 , u = 0 on Γ 0 , where R + N = { x ∈ R N : x N > 0 } , Γ 1 = { x ∈ R N : x N = 0 , x 1 < 0 } and Γ 0 = { x ∈ R N : x N = 0 , x 1 > 0 } . The exponents p , q satisfy the conditions in Theorem  1.1 .
ISSN:1029-242X
1025-5834
1029-242X
DOI:10.1186/s13660-015-0867-1