Liouville theorem for elliptic equations with mixed boundary value conditions and finite Morse indices
In this paper, we establish Liouville type theorem for boundedness solutions with finite Morse index of the following mixed boundary value problems: − Δ u = | u | p − 1 u in R + N , ∂ u ∂ ν = | u | q − 1 u on Γ 1 , ∂ u ∂ ν = 0 on Γ 0 , and − Δ u = | u | p − 1 u in R + N , ∂ u ∂ ν = | u | q − 1 u on...
Gespeichert in:
Veröffentlicht in: | Journal of inequalities and applications 2015-11, Vol.2015 (1), p.1-8, Article 351 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we establish Liouville type theorem for boundedness solutions with finite Morse index of the following mixed boundary value problems:
−
Δ
u
=
|
u
|
p
−
1
u
in
R
+
N
,
∂
u
∂
ν
=
|
u
|
q
−
1
u
on
Γ
1
,
∂
u
∂
ν
=
0
on
Γ
0
, and
−
Δ
u
=
|
u
|
p
−
1
u
in
R
+
N
,
∂
u
∂
ν
=
|
u
|
q
−
1
u
on
Γ
1
,
u
=
0
on
Γ
0
, where
R
+
N
=
{
x
∈
R
N
:
x
N
>
0
}
,
Γ
1
=
{
x
∈
R
N
:
x
N
=
0
,
x
1
<
0
}
and
Γ
0
=
{
x
∈
R
N
:
x
N
=
0
,
x
1
>
0
}
. The exponents
p
,
q
satisfy the conditions in Theorem
1.1
. |
---|---|
ISSN: | 1029-242X 1025-5834 1029-242X |
DOI: | 10.1186/s13660-015-0867-1 |