Monthly Rainfall Forecasting Using EEMD-SVR Based on Phase-Space Reconstruction
Rainfall links atmospheric and surficial processes and is one of the most important hydrologic variables. We apply support vector regression (SVR), which has a high generalization capability, to construct a rainfall forecasting model. Before construction of the model, a self-adaptive data analysis m...
Gespeichert in:
Veröffentlicht in: | Water resources management 2016-05, Vol.30 (7), p.2311-2325 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Rainfall links atmospheric and surficial processes and is one of the most important hydrologic variables. We apply support vector regression (SVR), which has a high generalization capability, to construct a rainfall forecasting model. Before construction of the model, a self-adaptive data analysis methodology called ensemble empirical mode decomposition (EEMD) is used to preprocess a rainfall data series. In addition, the phase-space reconstruction method is implemented to design input vectors for the forecasting model. The proposed hybrid model is applied to forecast the monthly rainfall at a weather station in Changchun, China as a case study. To demonstrate the capacity of the proposed hybrid model, a typical three-layer feed-forward artificial neural network model, an auto-regressive integrated moving average model, and a support vector regression model are constructed. Predictive performance of the models is evaluated based on normalized mean squared error (NMSE), mean absolute percent error (MAPE), Nash–Sutcliffe efficiency (NSE), and the coefficient of correlation (CC). Results indicate that the proposed hybrid model has the lowest NMSE and MAPE values of 0.10 and 14.90, respectively, and the highest NSE and CC values of 0.91 and 0.83, respectively, during the validation period. We conclude that the proposed hybrid model is feasible for monthly rainfall forecast and is better than the models currently in common use. |
---|---|
ISSN: | 0920-4741 1573-1650 |
DOI: | 10.1007/s11269-016-1288-8 |