Fermentation of Soybean Meal Hydrolyzates with Saccharomyces cerevisiae and Zymomonas mobilis for Ethanol Production
Most of the ethanol currently produced by fermentation is derived from sugar cane, corn, or beets. However, it makes good ecological and economic sense to use the carbohydrates contained in by‐products and coproducts of the food processing industry for ethanol production. Soybean meal, a co‐product...
Gespeichert in:
Veröffentlicht in: | Journal of food science 2015-07, Vol.80 (7), p.E1512-E1518 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Most of the ethanol currently produced by fermentation is derived from sugar cane, corn, or beets. However, it makes good ecological and economic sense to use the carbohydrates contained in by‐products and coproducts of the food processing industry for ethanol production. Soybean meal, a co‐product of the production of soybean oil, has a relatively high carbohydrate content that could be a reasonable substrate for ethanol production after fermentable sugars are released via hydrolysis. In this research, the capability of Saccharomyces cerevisiae NRRL Y‐2233 and Zymomonas mobilis subsp. mobilis NRRL B‐4286 to produce ethanol was evaluated using soybean meal hydrolyzates as substrates for the fermentation. These substrates were produced from the dilute‐acid hydrolysis of soybean meal at 135 °C for 45 min with 0, 0.5%, 1.25%, and 2% H2SO4 and at 120 °C for 30 min with 1.25% H2SO4. Kinetic parameters of the fermentation were estimated using the logistic model. Ethanol production using S. cerevisiae was highest with the substrates obtained at 135 °C, 45 min, and 0.5% H2SO4 and fermented for 8 h, 8 g/L (4 g ethanol/100 g fresh SBM), while Z. mobilis reached its maximum ethanol production, 9.2 g/L (4.6 g ethanol/100 g fresh SBM) in the first 20 h of fermentation with the same hydrolyzate. |
---|---|
ISSN: | 0022-1147 1750-3841 |
DOI: | 10.1111/1750-3841.12907 |