Predicting equivalent settling area factor in hydrocyclones; a method for determining tangential velocity profile

•This paper provides a model to predict the equivalent area factor for hydrocyclones.•This is used for comparing performance of hydrocyclones of different types and with other types of centrifuge separators.•This shows the effectiveness of a hydrocyclone comparing a gravity settling area.•The tangen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Separation and purification technology 2016-05, Vol.163, p.341-351
Hauptverfasser: Sabbagh, Reza, Lipsett, Michael G., Koch, Charles R., Nobes, David S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•This paper provides a model to predict the equivalent area factor for hydrocyclones.•This is used for comparing performance of hydrocyclones of different types and with other types of centrifuge separators.•This shows the effectiveness of a hydrocyclone comparing a gravity settling area.•The tangential velocity component is predicted for a given hydrocyclone geometry.•This shows the effect of operational and geometrical design parameters on the performance of hydrocyclone. Predicting the equivalent settling area of the hydrocyclones is important for selection and design of the device. It also allows comparison of hydrocyclone to other separators that work using a similar concept. A mathematical model based on the physics of the separation phenomenon in the hydrocyclone is developed to predict the equivalent area factor of the hydrocyclone. The effect of the overflow and inlet diameters on the hydrocyclone performance are evaluated and it is shown that changing the overflow diameter has more effect on the equivalent area factor than the inlet diameter. The equivalent settling area model (ESAM) is validated with experimental data from experiments using a 50mm diameter hydrocyclone and glass bead particles. Good agreement between ESAM and the experiments is observed. An advantage of ESAM is that it can be used to estimate the tangential velocity profile in a hydrocyclone. A method of predicting the tangential velocity profile on the basis of equivalent settling area without performing velocity measurement is detailed and examined for an experimental velocity profile. This allows the ESAM to be used as a framework for design of the hydrocyclone devices.
ISSN:1383-5866
1873-3794
DOI:10.1016/j.seppur.2016.03.009