Optimized threshold calculation for blanking nonlinearity at OFDM receivers based on impulsive noise estimation
Impulsive noise (IN) degrades the performance of OFDM-based communication systems. Performance degradation is usually measured in terms of signal-to-noise ratio (SNR) and symbol-error rate (SER). To improve the performance of the system of OFDM receivers, one of the effective methods is to use blank...
Gespeichert in:
Veröffentlicht in: | EURASIP journal on wireless communications and networking 2015-07, Vol.2015 (1), p.1-8, Article 191 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Impulsive noise (IN) degrades the performance of OFDM-based communication systems. Performance degradation is usually measured in terms of signal-to-noise ratio (SNR) and symbol-error rate (SER). To improve the performance of the system of OFDM receivers, one of the effective methods is to use blanking nonlinearity. In this method, the samples whose magnitudes exceed a certain fixed threshold are considered to be IN-affected and are therefore blanked. A fixed threshold does not always determine the IN-affected samples truly for all probabilities of IN occurrence. This paper proposes an optimized threshold-calculation method for blanking nonlinearity which is based on distribution characteristics of the received signal, i.e., mean, median, and peak. The proposed method can calculate an optimized threshold for all probabilities of impulsive noise occurrence. Simulation results show over 2.2-dB gain in SNR and lower SER by using the proposed method as compared to fixed threshold. |
---|---|
ISSN: | 1687-1499 1687-1472 1687-1499 |
DOI: | 10.1186/s13638-015-0416-0 |