Seepage Monitoring Models Study of Earth-Rock Dams Influenced by Rainstorms
For earth-rock dams influenced by rainstorms, seepage status monitoring is very important and provides the basis for the safe and effective operation of earth-rock dams. The most influential factors concerning the seepage of earth-rock dams are the reservoir water level, precipitation, temperature,...
Gespeichert in:
Veröffentlicht in: | Mathematical Problems in Engineering 2016-01, Vol.2016 (2016), p.917-927 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For earth-rock dams influenced by rainstorms, seepage status monitoring is very important and provides the basis for the safe and effective operation of earth-rock dams. The most influential factors concerning the seepage of earth-rock dams are the reservoir water level, precipitation, temperature, and timeliness, and the influence of the reservoir water level and precipitation on the seepage of an earth-rock dam exhibits hysteretic effects. The reservoir water level of an earth-rock dam abruptly increases and may exceed the historically highest water level, therein causing new deformations of the earth-rock dam or even plastic deformation. Thus, the permeability coefficient for parts of an earth-rock dam changes, and we present the exceeded water level factor. Considering the complexity of the seepage monitoring of earth-rock dams, based on the hysteretic reservoir water level and precipitation, temperature, timeliness, and the exceeded water level factor, a statistical model based on an explicit function and an artificial wavelet neural network model based on an implicit function are established. Based on these two models, an integrated monitoring model based on maximum entropy theory is established. At the end of this paper, three monitoring models are used for the seepage monitoring of a measuring point of an earth-rock dam influenced by rainstorms, and the results show that the three monitoring models obtain satisfactory predication accuracy. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2016/1656738 |