Simultaneous identification and quantification of new psychoactive substances in blood by GC-APCI-QTOFMS coupled to nitrogen chemiluminescence detection without authentic reference standards

A novel platform is introduced for simultaneous identification and quantification of new psychoactive substances (NPS) in blood matrix, without the necessity of using authentic reference standards. The instrumentation consisted of gas chromatography (GC) coupled to nitrogen chemiluminescence detecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical and bioanalytical chemistry 2016-05, Vol.408 (13), p.3395-3400
Hauptverfasser: Ojanperä, Ilkka, Mesihää, Samuel, Rasanen, Ilpo, Pelander, Anna, Ketola, Raimo A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel platform is introduced for simultaneous identification and quantification of new psychoactive substances (NPS) in blood matrix, without the necessity of using authentic reference standards. The instrumentation consisted of gas chromatography (GC) coupled to nitrogen chemiluminescence detection (NCD) and atmospheric pressure chemical ionization quadrupole time-of-flight mass spectrometry (APCI-QTOFMS). In this concept, the GC flow is divided in appropriate proportions between NCD for single-calibrant quantification, utilizing the detector’s equimolar response to nitrogen, and QTOFMS for accurate mass-based identification. The principle was proven by analyzing five NPS, bupropion, desoxypipradrol (2-DPMP), mephedrone, methylone, and naphyrone, in sheep blood. The samples were spiked with the analytes post-extraction to avoid recovery considerations at this point. All the NPS studies produced a protonated molecule in APCI resulting in predictable fragmentation with high mass accuracy. The N -equimolarity of quantification by NCD was investigated by using external calibration with the secondary standard caffeine at five concentration levels between 0.17 and 1.7 mg/L in blood matrix as five replicates. The equimolarity was on average 98.7 %, and the range of individual equimolarity determinations was 76.7–130.1 %. The current analysis platform affords a promising approach to instant simultaneous qualitative and quantitative analysis of drugs in the absence of authentic reference standards, not only in forensic and clinical toxicology but also in other bioanalytical applications. Graphical abstract Analytical & Bioanalytical Chemistry
ISSN:1618-2642
1618-2650
DOI:10.1007/s00216-016-9461-8