A frequency-sharing weather radar network system using pulse compression and sidelobe suppression
To mitigate damages due to natural disasters and abruptly changing weather, the importance of a weather radar network system (WRNS) is growing. Because radars in the current form of a WRNS operate in distinct frequency bands, operating a WRNS consisting of a large number of radars is very costly in...
Gespeichert in:
Veröffentlicht in: | EURASIP journal on wireless communications and networking 2016-04, Vol.2016 (1), p.1-15, Article 100 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To mitigate damages due to natural disasters and abruptly changing weather, the importance of a weather radar network system (WRNS) is growing. Because radars in the current form of a WRNS operate in distinct frequency bands, operating a WRNS consisting of a large number of radars is very costly in terms of frequency resource. In this paper, we propose a novel WRNS in which multi-site weather radars share the same frequency band. By employing pulse compression with nearly orthogonal polyphase codes and sidelobe removal processing, a weather radar of the proposed frequency-sharing WRNS addresses inter-site and intra-site interferences simultaneously. Through computer simulations, we show the feasibility of the proposed system taking the performance requirement of a typical single weather radar into account. |
---|---|
ISSN: | 1687-1499 1687-1472 1687-1499 |
DOI: | 10.1186/s13638-016-0595-3 |