Development of the Rate-Controlled Constrained-Equilibrium Method for Modeling of Ethanol Combustion
The rate-controlled constrained-equilibrium method (RCCE) has been further developed to model the combustion process of ethanol air mixtures. The RCCE is a reduction technique based on local maximization of entropy or minimization of a relevant free energy at any time during the nonequilibrium evolu...
Gespeichert in:
Veröffentlicht in: | Journal of energy resources technology 2016-03, Vol.138 (2) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The rate-controlled constrained-equilibrium method (RCCE) has been further developed to model the combustion process of ethanol air mixtures. The RCCE is a reduction technique based on local maximization of entropy or minimization of a relevant free energy at any time during the nonequilibrium evolution of the system subject to a set of kinetic constraints. An important part of RCCE calculation is determination of a set of constraints that can guide the nonequilibrium mixture to the final stable equilibrium state. In this study, 16 constraints have been developed to model the nonequilibrium ethanol combustion process. The method requires solution of 16 differential equations for the corresponding constraint potentials. Ignition delay calculations of ethanol oxidizer mixtures using RCCE have been compared to those of detailed chemical kinetics using 37 species and 235 reactions. Agreement between the two models is very good. In addition, ignition delay of C2H5OH/O2/Ar mixtures using RCCE has been compared with the experimental measurements in the shock tube and excellent agreement has been reached validating the RCCE calculation. |
---|---|
ISSN: | 0195-0738 1528-8994 |
DOI: | 10.1115/1.4031511 |