General decay rates for the wave equation with mixed-type damping mechanisms on unbounded domain with finite measure

This paper is concerned with the study of the uniform decay rates of the energy associated with the wave equation subject to a locally distributed viscoelastic dissipation and a nonlinear frictional damping u t t - Δ u + ∫ 0 t g ( t - s ) div [ a ( x ) ∇ u ( s ) ] d s + b ( x ) f ( u t ) = 0 on Ω ×...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Physik 2015-12, Vol.66 (6), p.3123-3145
Hauptverfasser: Dias Silva, Flávio R., Nascimento, Flávio A. F., Rodrigues, José H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3145
container_issue 6
container_start_page 3123
container_title Zeitschrift für angewandte Mathematik und Physik
container_volume 66
creator Dias Silva, Flávio R.
Nascimento, Flávio A. F.
Rodrigues, José H.
description This paper is concerned with the study of the uniform decay rates of the energy associated with the wave equation subject to a locally distributed viscoelastic dissipation and a nonlinear frictional damping u t t - Δ u + ∫ 0 t g ( t - s ) div [ a ( x ) ∇ u ( s ) ] d s + b ( x ) f ( u t ) = 0 on Ω × ] 0 , ∞ [ , where Ω ⊂ R n , n ≥ 2 is an unbounded open set with finite measure and unbounded smooth boundary ∂ Ω = Γ . Supposing that the localization functions satisfy the “competitive” assumption a ( x ) + b ( x ) ≥ δ > 0 for all x ∈ Ω and the relaxation function g satisfies certain nonlinear differential inequalities introduced by Lasiecka et al. (J Math Phys 54(3):031504, 2013 ), we extend to our considered domain the prior results of Cavalcanti and Oquendo (SIAM J Control Optim 42(4):1310–1324, 2003 ). In addition, while in Cavalcanti and Oquendo ( 2003 ) the authors just consider exponential and polynomial decay rate estimates, in the present article general decay rate estimates are obtained.
doi_str_mv 10.1007/s00033-015-0547-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808060990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808060990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-63b7c6a23b20963ba76d4c55b2be2a6ef94d795663d2f8621031578b5bed2f533</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhi0EEqXwAGweWQxnO06aEVVQkCqxwGw58aV11Tit7VD69rgqM9PpTt9_0v8Rcs_hkQNUTxEApGTAFQNVVExdkAkvBLAaZH1JJgBFwYSo1DW5iXGT6YqDnJC0QI_BbKnF1hxpMAkj7YZA0xrpwXwjxf1okhs8Pbi0pr37QcvScYfUmn7n_Ir22K6Nd7GPNFOjb4bRW7TUDr1xf7HOeZcwoyaOAW_JVWe2Ee_-5pR8vb58zt_Y8mPxPn9eslYKnlgpm6otjZCNgDovpipt0SrViAaFKbGrC1vVqiylFd2sFLkQV9WsUQ3mg5JySh7Of3dh2I8Yk-5dbHG7NR6HMWo-gxmUUGdHU8LPaBuGGAN2ehdcb8JRc9Anw_psWGfD-mRYq5wR50zMrF9h0JthDD43-if0C1RGf4I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808060990</pqid></control><display><type>article</type><title>General decay rates for the wave equation with mixed-type damping mechanisms on unbounded domain with finite measure</title><source>Springer Nature - Complete Springer Journals</source><creator>Dias Silva, Flávio R. ; Nascimento, Flávio A. F. ; Rodrigues, José H.</creator><creatorcontrib>Dias Silva, Flávio R. ; Nascimento, Flávio A. F. ; Rodrigues, José H.</creatorcontrib><description>This paper is concerned with the study of the uniform decay rates of the energy associated with the wave equation subject to a locally distributed viscoelastic dissipation and a nonlinear frictional damping u t t - Δ u + ∫ 0 t g ( t - s ) div [ a ( x ) ∇ u ( s ) ] d s + b ( x ) f ( u t ) = 0 on Ω × ] 0 , ∞ [ , where Ω ⊂ R n , n ≥ 2 is an unbounded open set with finite measure and unbounded smooth boundary ∂ Ω = Γ . Supposing that the localization functions satisfy the “competitive” assumption a ( x ) + b ( x ) ≥ δ &gt; 0 for all x ∈ Ω and the relaxation function g satisfies certain nonlinear differential inequalities introduced by Lasiecka et al. (J Math Phys 54(3):031504, 2013 ), we extend to our considered domain the prior results of Cavalcanti and Oquendo (SIAM J Control Optim 42(4):1310–1324, 2003 ). In addition, while in Cavalcanti and Oquendo ( 2003 ) the authors just consider exponential and polynomial decay rate estimates, in the present article general decay rate estimates are obtained.</description><identifier>ISSN: 0044-2275</identifier><identifier>EISSN: 1420-9039</identifier><identifier>DOI: 10.1007/s00033-015-0547-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Damping ; Decay rate ; Engineering ; Estimates ; Functions (mathematics) ; Mathematical analysis ; Mathematical Methods in Physics ; Nonlinearity ; Polynomials ; Theoretical and Applied Mechanics ; Wave equations</subject><ispartof>Zeitschrift für angewandte Mathematik und Physik, 2015-12, Vol.66 (6), p.3123-3145</ispartof><rights>Springer Basel 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-63b7c6a23b20963ba76d4c55b2be2a6ef94d795663d2f8621031578b5bed2f533</citedby><cites>FETCH-LOGICAL-c321t-63b7c6a23b20963ba76d4c55b2be2a6ef94d795663d2f8621031578b5bed2f533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00033-015-0547-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00033-015-0547-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Dias Silva, Flávio R.</creatorcontrib><creatorcontrib>Nascimento, Flávio A. F.</creatorcontrib><creatorcontrib>Rodrigues, José H.</creatorcontrib><title>General decay rates for the wave equation with mixed-type damping mechanisms on unbounded domain with finite measure</title><title>Zeitschrift für angewandte Mathematik und Physik</title><addtitle>Z. Angew. Math. Phys</addtitle><description>This paper is concerned with the study of the uniform decay rates of the energy associated with the wave equation subject to a locally distributed viscoelastic dissipation and a nonlinear frictional damping u t t - Δ u + ∫ 0 t g ( t - s ) div [ a ( x ) ∇ u ( s ) ] d s + b ( x ) f ( u t ) = 0 on Ω × ] 0 , ∞ [ , where Ω ⊂ R n , n ≥ 2 is an unbounded open set with finite measure and unbounded smooth boundary ∂ Ω = Γ . Supposing that the localization functions satisfy the “competitive” assumption a ( x ) + b ( x ) ≥ δ &gt; 0 for all x ∈ Ω and the relaxation function g satisfies certain nonlinear differential inequalities introduced by Lasiecka et al. (J Math Phys 54(3):031504, 2013 ), we extend to our considered domain the prior results of Cavalcanti and Oquendo (SIAM J Control Optim 42(4):1310–1324, 2003 ). In addition, while in Cavalcanti and Oquendo ( 2003 ) the authors just consider exponential and polynomial decay rate estimates, in the present article general decay rate estimates are obtained.</description><subject>Damping</subject><subject>Decay rate</subject><subject>Engineering</subject><subject>Estimates</subject><subject>Functions (mathematics)</subject><subject>Mathematical analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Nonlinearity</subject><subject>Polynomials</subject><subject>Theoretical and Applied Mechanics</subject><subject>Wave equations</subject><issn>0044-2275</issn><issn>1420-9039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAQhi0EEqXwAGweWQxnO06aEVVQkCqxwGw58aV11Tit7VD69rgqM9PpTt9_0v8Rcs_hkQNUTxEApGTAFQNVVExdkAkvBLAaZH1JJgBFwYSo1DW5iXGT6YqDnJC0QI_BbKnF1hxpMAkj7YZA0xrpwXwjxf1okhs8Pbi0pr37QcvScYfUmn7n_Ir22K6Nd7GPNFOjb4bRW7TUDr1xf7HOeZcwoyaOAW_JVWe2Ee_-5pR8vb58zt_Y8mPxPn9eslYKnlgpm6otjZCNgDovpipt0SrViAaFKbGrC1vVqiylFd2sFLkQV9WsUQ3mg5JySh7Of3dh2I8Yk-5dbHG7NR6HMWo-gxmUUGdHU8LPaBuGGAN2ehdcb8JRc9Anw_psWGfD-mRYq5wR50zMrF9h0JthDD43-if0C1RGf4I</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Dias Silva, Flávio R.</creator><creator>Nascimento, Flávio A. F.</creator><creator>Rodrigues, José H.</creator><general>Springer International Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20151201</creationdate><title>General decay rates for the wave equation with mixed-type damping mechanisms on unbounded domain with finite measure</title><author>Dias Silva, Flávio R. ; Nascimento, Flávio A. F. ; Rodrigues, José H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-63b7c6a23b20963ba76d4c55b2be2a6ef94d795663d2f8621031578b5bed2f533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Damping</topic><topic>Decay rate</topic><topic>Engineering</topic><topic>Estimates</topic><topic>Functions (mathematics)</topic><topic>Mathematical analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Nonlinearity</topic><topic>Polynomials</topic><topic>Theoretical and Applied Mechanics</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dias Silva, Flávio R.</creatorcontrib><creatorcontrib>Nascimento, Flávio A. F.</creatorcontrib><creatorcontrib>Rodrigues, José H.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dias Silva, Flávio R.</au><au>Nascimento, Flávio A. F.</au><au>Rodrigues, José H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>General decay rates for the wave equation with mixed-type damping mechanisms on unbounded domain with finite measure</atitle><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle><stitle>Z. Angew. Math. Phys</stitle><date>2015-12-01</date><risdate>2015</risdate><volume>66</volume><issue>6</issue><spage>3123</spage><epage>3145</epage><pages>3123-3145</pages><issn>0044-2275</issn><eissn>1420-9039</eissn><abstract>This paper is concerned with the study of the uniform decay rates of the energy associated with the wave equation subject to a locally distributed viscoelastic dissipation and a nonlinear frictional damping u t t - Δ u + ∫ 0 t g ( t - s ) div [ a ( x ) ∇ u ( s ) ] d s + b ( x ) f ( u t ) = 0 on Ω × ] 0 , ∞ [ , where Ω ⊂ R n , n ≥ 2 is an unbounded open set with finite measure and unbounded smooth boundary ∂ Ω = Γ . Supposing that the localization functions satisfy the “competitive” assumption a ( x ) + b ( x ) ≥ δ &gt; 0 for all x ∈ Ω and the relaxation function g satisfies certain nonlinear differential inequalities introduced by Lasiecka et al. (J Math Phys 54(3):031504, 2013 ), we extend to our considered domain the prior results of Cavalcanti and Oquendo (SIAM J Control Optim 42(4):1310–1324, 2003 ). In addition, while in Cavalcanti and Oquendo ( 2003 ) the authors just consider exponential and polynomial decay rate estimates, in the present article general decay rate estimates are obtained.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00033-015-0547-5</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0044-2275
ispartof Zeitschrift für angewandte Mathematik und Physik, 2015-12, Vol.66 (6), p.3123-3145
issn 0044-2275
1420-9039
language eng
recordid cdi_proquest_miscellaneous_1808060990
source Springer Nature - Complete Springer Journals
subjects Damping
Decay rate
Engineering
Estimates
Functions (mathematics)
Mathematical analysis
Mathematical Methods in Physics
Nonlinearity
Polynomials
Theoretical and Applied Mechanics
Wave equations
title General decay rates for the wave equation with mixed-type damping mechanisms on unbounded domain with finite measure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A15%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=General%20decay%20rates%20for%20the%20wave%20equation%20with%20mixed-type%20damping%20mechanisms%20on%20unbounded%20domain%20with%20finite%20measure&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Physik&rft.au=Dias%20Silva,%20Fl%C3%A1vio%20R.&rft.date=2015-12-01&rft.volume=66&rft.issue=6&rft.spage=3123&rft.epage=3145&rft.pages=3123-3145&rft.issn=0044-2275&rft.eissn=1420-9039&rft_id=info:doi/10.1007/s00033-015-0547-5&rft_dat=%3Cproquest_cross%3E1808060990%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808060990&rft_id=info:pmid/&rfr_iscdi=true