General decay rates for the wave equation with mixed-type damping mechanisms on unbounded domain with finite measure
This paper is concerned with the study of the uniform decay rates of the energy associated with the wave equation subject to a locally distributed viscoelastic dissipation and a nonlinear frictional damping u t t - Δ u + ∫ 0 t g ( t - s ) div [ a ( x ) ∇ u ( s ) ] d s + b ( x ) f ( u t ) = 0 on Ω ×...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für angewandte Mathematik und Physik 2015-12, Vol.66 (6), p.3123-3145 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is concerned with the study of the uniform decay rates of the energy associated with the wave equation subject to a locally distributed viscoelastic dissipation and a nonlinear frictional damping
u
t
t
-
Δ
u
+
∫
0
t
g
(
t
-
s
)
div
[
a
(
x
)
∇
u
(
s
)
]
d
s
+
b
(
x
)
f
(
u
t
)
=
0
on
Ω
×
]
0
,
∞
[
,
where
Ω
⊂
R
n
,
n
≥
2
is an
unbounded
open set with
finite measure
and unbounded smooth boundary
∂
Ω
=
Γ
. Supposing that the localization functions satisfy the “competitive” assumption
a
(
x
)
+
b
(
x
)
≥
δ
>
0
for all
x
∈
Ω
and the relaxation function
g
satisfies certain nonlinear differential inequalities introduced by Lasiecka et al. (J Math Phys 54(3):031504,
2013
), we extend to our considered domain the prior results of Cavalcanti and Oquendo (SIAM J Control Optim 42(4):1310–1324,
2003
). In addition, while in Cavalcanti and Oquendo (
2003
) the authors just consider exponential and polynomial decay rate estimates, in the present article general decay rate estimates are obtained. |
---|---|
ISSN: | 0044-2275 1420-9039 |
DOI: | 10.1007/s00033-015-0547-5 |