Design and Synthesis of a Geopolymer-Enhanced Quasi-Crystalline Composite for Resisting Wear and Corrosion

Multiphase composites are attractive for improved mechanical performance and corrosion resistance. In this research, a new composite consisting quasi-crystalline Al75Mn14Si7Fe4 alloy of icosahedral, cubic α-AlMnSiFe, monoclinic Al13Fe4 phases, and ferro-silico-aluminate geopolymer was synthesized us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of tribology 2016-04, Vol.138 (2)
Hauptverfasser: Fevzi Ozaydin, M, Liang, Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multiphase composites are attractive for improved mechanical performance and corrosion resistance. In this research, a new composite consisting quasi-crystalline Al75Mn14Si7Fe4 alloy of icosahedral, cubic α-AlMnSiFe, monoclinic Al13Fe4 phases, and ferro-silico-aluminate geopolymer was synthesized using rapid solidification and thermal treatment methods. The concentration of icosahedral phase (i-phase) was controlled and the formation of geopolymer was obtained through heat treatment. Characterization showed that the microhardness and wear resistance were increased with the amount of i-phase. The corrosion resistance, on the other hand, was improved with the existence of the geopolymer. This research demonstrates an effective approach in processing a multiphase composite that has desired properties and performance through multiphase design and composition.
ISSN:0742-4787
1528-8897
DOI:10.1115/1.4031400