Geometry and dynamics of a coupled 4D-2D quantum field theory
A bstract Geometric and dynamical aspects of a coupled 4 D -2 D interacting quantum field theory — the gauged nonAbelian vortex — are investigated. The fluctuations of the internal 2 D nonAbelian vortex zeromodes excite the massless 4 D Yang-Mills modes and in general give rise to divergent energies...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2016-01, Vol.2016 (1), p.1-37, Article 75 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A
bstract
Geometric and dynamical aspects of a coupled 4
D
-2
D
interacting quantum field theory — the gauged nonAbelian vortex — are investigated. The fluctuations of the internal 2
D
nonAbelian vortex zeromodes excite the massless 4
D
Yang-Mills modes and in general give rise to divergent energies. This means that the well-known 2
D
ℂ
ℙ
N
−
1
zeromodes associated with a nonAbelian vortex become nonnormalizable.
Moreover, all sorts of global, topological 4
D
effects such as the nonAbelian Aharonov-Bohm effect come into play. These topological global features and the dynamical properties associated with the fluctuation of the 2
D
vortex moduli modes are intimately correlated, as shown concretely here in a U
0
(1) × SU
l
(
N
) × SU
r
(
N
) model with scalar fields in a bifundamental representation of the two SU(
N
) factor gauge groups. |
---|---|
ISSN: | 1029-8479 1029-8479 |
DOI: | 10.1007/JHEP01(2016)075 |