High-gain 1.3  μm GaInNAs semiconductor optical amplifier with enhanced temperature stability for all-optical signal processing at 10  Gb/s

We report on the complete experimental evaluation of a GaInNAs/GaAs (dilute nitride) semiconductor optical amplifier that operates at 1.3 μm and exhibits 28 dB gain and a gain recovery time of 100 ps. Successful wavelength conversion operation is demonstrated using pseudorandom bit sequence 2 -1 non...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied optics (2004) 2015-01, Vol.54 (1), p.46-52
Hauptverfasser: Fitsios, D, Giannoulis, G, Korpijärvi, V-M, Viheriälä, J, Laakso, A, Iliadis, N, Dris, S, Spyropoulou, M, Avramopoulos, H, Kanellos, G T, Pleros, N, Guina, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report on the complete experimental evaluation of a GaInNAs/GaAs (dilute nitride) semiconductor optical amplifier that operates at 1.3 μm and exhibits 28 dB gain and a gain recovery time of 100 ps. Successful wavelength conversion operation is demonstrated using pseudorandom bit sequence 2 -1 non-return-to-zero bit streams at 5 and 10  Gb/s, yielding error-free performance and showing feasibility for implementation in various signal processing functionalities. The operational credentials of the device are analyzed in various operational regimes, while its nonlinear performance is examined in terms of four-wave mixing. Moreover, characterization results reveal enhanced temperature stability with almost no gain variation around the 1320 nm region for a temperature range from 20°C to 50°C. The operational characteristics of the device, along with the cost and energy benefits of dilute nitride technology, make it very attractive for application in optical access networks and dense photonic integrated circuits.
ISSN:1559-128X
2155-3165
1539-4522
DOI:10.1364/AO.54.000046