Angular Momentum and Topological Dependence of Kepler's Third Law in the Broucke-Hadjidemetriou-Hénon Family of Periodic Three-Body Orbits
We use 57 recently found topological satellites of Broucke-Hadjidemetriou-Hénon's periodic orbits with values of the topological exponent k ranging from k=3 to k=58 to plot the angular momentum L as a function of the period T, with both L and T rescaled to energy E=-0.5. Upon plotting L(T/k) we...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2016-02, Vol.116 (6), p.064301-064301, Article 064301 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 064301 |
---|---|
container_issue | 6 |
container_start_page | 064301 |
container_title | Physical review letters |
container_volume | 116 |
creator | Jankovic, Marija R Dmitrasinovic, V |
description | We use 57 recently found topological satellites of Broucke-Hadjidemetriou-Hénon's periodic orbits with values of the topological exponent k ranging from k=3 to k=58 to plot the angular momentum L as a function of the period T, with both L and T rescaled to energy E=-0.5. Upon plotting L(T/k) we find that all our solutions fall on a curve that is virtually indiscernible by the naked eye from the L(T) curve for nonsatellite solutions. The standard deviation of the satellite data from the sixth-order polynomial fit to the progenitor data is σ=0.13. This regularity supports Hénon's 1976 conjecture that the linearly stable Broucke-Hadjidemetriou-Hénon orbits are also perpetually, or Kol'mogorov-Arnol'd-Moser, stable. |
doi_str_mv | 10.1103/PhysRevLett.116.064301 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808056841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1768558801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-6cef92d440bf756b26676630a14360a67df3e5c046384b68ff66118d2554f15f3</originalsourceid><addsrcrecordid>eNqFkcFu1DAURS0EokPhFyrvYJPyHDsvzrItlEEMaoWGdeTEzx2XJA52Appv4Ev4Dn6MjKYgdqyedHTvfYvD2JmAcyFAvr7d7dMn-rahaVoAngMqCeIRWwkoq6wUQj1mKwApsgqgPGHPUroHAJGjfspOcqyEriq5Yj8uhru5M5F_DD0N09xzM1i-DWPowp1vTcff0EiDpaElHhz_QGNH8WXi252Plm_Md-4HPu2IX8Ywt18oWxt77y31NEUf5mz96-cQBn5tet_tDwu3tHDr22UhEmWXwe75TWz8lJ6zJ850iV483FP2-frt9mqdbW7evb-62GStKvSUYUuuyq1S0LiywCZHLBElGKEkgsHSOklFCwqlVg1q5xCF0DYvCuVE4eQpe3XcHWP4OlOa6t6nlrrODBTmVAsNGgrUSvw_WqIuCq3hEMVjtI0hpUiuHqPvTdzXAuqDs_ofZwvA-uhsKZ49_Jibnuzf2h9J8jfYuJY9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1768558801</pqid></control><display><type>article</type><title>Angular Momentum and Topological Dependence of Kepler's Third Law in the Broucke-Hadjidemetriou-Hénon Family of Periodic Three-Body Orbits</title><source>American Physical Society Journals</source><creator>Jankovic, Marija R ; Dmitrasinovic, V</creator><creatorcontrib>Jankovic, Marija R ; Dmitrasinovic, V</creatorcontrib><description>We use 57 recently found topological satellites of Broucke-Hadjidemetriou-Hénon's periodic orbits with values of the topological exponent k ranging from k=3 to k=58 to plot the angular momentum L as a function of the period T, with both L and T rescaled to energy E=-0.5. Upon plotting L(T/k) we find that all our solutions fall on a curve that is virtually indiscernible by the naked eye from the L(T) curve for nonsatellite solutions. The standard deviation of the satellite data from the sixth-order polynomial fit to the progenitor data is σ=0.13. This regularity supports Hénon's 1976 conjecture that the linearly stable Broucke-Hadjidemetriou-Hénon orbits are also perpetually, or Kol'mogorov-Arnol'd-Moser, stable.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.116.064301</identifier><identifier>PMID: 26918993</identifier><language>eng</language><publisher>United States</publisher><subject>Angular momentum ; Functions (mathematics) ; Orbits ; Plotting ; Polynomials ; Satellites ; Standard deviation ; Topology</subject><ispartof>Physical review letters, 2016-02, Vol.116 (6), p.064301-064301, Article 064301</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-6cef92d440bf756b26676630a14360a67df3e5c046384b68ff66118d2554f15f3</citedby><cites>FETCH-LOGICAL-c458t-6cef92d440bf756b26676630a14360a67df3e5c046384b68ff66118d2554f15f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26918993$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jankovic, Marija R</creatorcontrib><creatorcontrib>Dmitrasinovic, V</creatorcontrib><title>Angular Momentum and Topological Dependence of Kepler's Third Law in the Broucke-Hadjidemetriou-Hénon Family of Periodic Three-Body Orbits</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We use 57 recently found topological satellites of Broucke-Hadjidemetriou-Hénon's periodic orbits with values of the topological exponent k ranging from k=3 to k=58 to plot the angular momentum L as a function of the period T, with both L and T rescaled to energy E=-0.5. Upon plotting L(T/k) we find that all our solutions fall on a curve that is virtually indiscernible by the naked eye from the L(T) curve for nonsatellite solutions. The standard deviation of the satellite data from the sixth-order polynomial fit to the progenitor data is σ=0.13. This regularity supports Hénon's 1976 conjecture that the linearly stable Broucke-Hadjidemetriou-Hénon orbits are also perpetually, or Kol'mogorov-Arnol'd-Moser, stable.</description><subject>Angular momentum</subject><subject>Functions (mathematics)</subject><subject>Orbits</subject><subject>Plotting</subject><subject>Polynomials</subject><subject>Satellites</subject><subject>Standard deviation</subject><subject>Topology</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAURS0EokPhFyrvYJPyHDsvzrItlEEMaoWGdeTEzx2XJA52Appv4Ev4Dn6MjKYgdqyedHTvfYvD2JmAcyFAvr7d7dMn-rahaVoAngMqCeIRWwkoq6wUQj1mKwApsgqgPGHPUroHAJGjfspOcqyEriq5Yj8uhru5M5F_DD0N09xzM1i-DWPowp1vTcff0EiDpaElHhz_QGNH8WXi252Plm_Md-4HPu2IX8Ywt18oWxt77y31NEUf5mz96-cQBn5tet_tDwu3tHDr22UhEmWXwe75TWz8lJ6zJ850iV483FP2-frt9mqdbW7evb-62GStKvSUYUuuyq1S0LiywCZHLBElGKEkgsHSOklFCwqlVg1q5xCF0DYvCuVE4eQpe3XcHWP4OlOa6t6nlrrODBTmVAsNGgrUSvw_WqIuCq3hEMVjtI0hpUiuHqPvTdzXAuqDs_ofZwvA-uhsKZ49_Jibnuzf2h9J8jfYuJY9</recordid><startdate>20160212</startdate><enddate>20160212</enddate><creator>Jankovic, Marija R</creator><creator>Dmitrasinovic, V</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160212</creationdate><title>Angular Momentum and Topological Dependence of Kepler's Third Law in the Broucke-Hadjidemetriou-Hénon Family of Periodic Three-Body Orbits</title><author>Jankovic, Marija R ; Dmitrasinovic, V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-6cef92d440bf756b26676630a14360a67df3e5c046384b68ff66118d2554f15f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Angular momentum</topic><topic>Functions (mathematics)</topic><topic>Orbits</topic><topic>Plotting</topic><topic>Polynomials</topic><topic>Satellites</topic><topic>Standard deviation</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jankovic, Marija R</creatorcontrib><creatorcontrib>Dmitrasinovic, V</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jankovic, Marija R</au><au>Dmitrasinovic, V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Angular Momentum and Topological Dependence of Kepler's Third Law in the Broucke-Hadjidemetriou-Hénon Family of Periodic Three-Body Orbits</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2016-02-12</date><risdate>2016</risdate><volume>116</volume><issue>6</issue><spage>064301</spage><epage>064301</epage><pages>064301-064301</pages><artnum>064301</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We use 57 recently found topological satellites of Broucke-Hadjidemetriou-Hénon's periodic orbits with values of the topological exponent k ranging from k=3 to k=58 to plot the angular momentum L as a function of the period T, with both L and T rescaled to energy E=-0.5. Upon plotting L(T/k) we find that all our solutions fall on a curve that is virtually indiscernible by the naked eye from the L(T) curve for nonsatellite solutions. The standard deviation of the satellite data from the sixth-order polynomial fit to the progenitor data is σ=0.13. This regularity supports Hénon's 1976 conjecture that the linearly stable Broucke-Hadjidemetriou-Hénon orbits are also perpetually, or Kol'mogorov-Arnol'd-Moser, stable.</abstract><cop>United States</cop><pmid>26918993</pmid><doi>10.1103/PhysRevLett.116.064301</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2016-02, Vol.116 (6), p.064301-064301, Article 064301 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808056841 |
source | American Physical Society Journals |
subjects | Angular momentum Functions (mathematics) Orbits Plotting Polynomials Satellites Standard deviation Topology |
title | Angular Momentum and Topological Dependence of Kepler's Third Law in the Broucke-Hadjidemetriou-Hénon Family of Periodic Three-Body Orbits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A56%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Angular%20Momentum%20and%20Topological%20Dependence%20of%20Kepler's%20Third%20Law%20in%20the%20Broucke-Hadjidemetriou-H%C3%A9non%20Family%20of%20Periodic%20Three-Body%20Orbits&rft.jtitle=Physical%20review%20letters&rft.au=Jankovic,%20Marija%20R&rft.date=2016-02-12&rft.volume=116&rft.issue=6&rft.spage=064301&rft.epage=064301&rft.pages=064301-064301&rft.artnum=064301&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.116.064301&rft_dat=%3Cproquest_cross%3E1768558801%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1768558801&rft_id=info:pmid/26918993&rfr_iscdi=true |