Angular Momentum and Topological Dependence of Kepler's Third Law in the Broucke-Hadjidemetriou-Hénon Family of Periodic Three-Body Orbits

We use 57 recently found topological satellites of Broucke-Hadjidemetriou-Hénon's periodic orbits with values of the topological exponent k ranging from k=3 to k=58 to plot the angular momentum L as a function of the period T, with both L and T rescaled to energy E=-0.5. Upon plotting L(T/k) we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2016-02, Vol.116 (6), p.064301-064301, Article 064301
Hauptverfasser: Jankovic, Marija R, Dmitrasinovic, V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 064301
container_issue 6
container_start_page 064301
container_title Physical review letters
container_volume 116
creator Jankovic, Marija R
Dmitrasinovic, V
description We use 57 recently found topological satellites of Broucke-Hadjidemetriou-Hénon's periodic orbits with values of the topological exponent k ranging from k=3 to k=58 to plot the angular momentum L as a function of the period T, with both L and T rescaled to energy E=-0.5. Upon plotting L(T/k) we find that all our solutions fall on a curve that is virtually indiscernible by the naked eye from the L(T) curve for nonsatellite solutions. The standard deviation of the satellite data from the sixth-order polynomial fit to the progenitor data is σ=0.13. This regularity supports Hénon's 1976 conjecture that the linearly stable Broucke-Hadjidemetriou-Hénon orbits are also perpetually, or Kol'mogorov-Arnol'd-Moser, stable.
doi_str_mv 10.1103/PhysRevLett.116.064301
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808056841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1768558801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-6cef92d440bf756b26676630a14360a67df3e5c046384b68ff66118d2554f15f3</originalsourceid><addsrcrecordid>eNqFkcFu1DAURS0EokPhFyrvYJPyHDsvzrItlEEMaoWGdeTEzx2XJA52Appv4Ev4Dn6MjKYgdqyedHTvfYvD2JmAcyFAvr7d7dMn-rahaVoAngMqCeIRWwkoq6wUQj1mKwApsgqgPGHPUroHAJGjfspOcqyEriq5Yj8uhru5M5F_DD0N09xzM1i-DWPowp1vTcff0EiDpaElHhz_QGNH8WXi252Plm_Md-4HPu2IX8Ywt18oWxt77y31NEUf5mz96-cQBn5tet_tDwu3tHDr22UhEmWXwe75TWz8lJ6zJ850iV483FP2-frt9mqdbW7evb-62GStKvSUYUuuyq1S0LiywCZHLBElGKEkgsHSOklFCwqlVg1q5xCF0DYvCuVE4eQpe3XcHWP4OlOa6t6nlrrODBTmVAsNGgrUSvw_WqIuCq3hEMVjtI0hpUiuHqPvTdzXAuqDs_ofZwvA-uhsKZ49_Jibnuzf2h9J8jfYuJY9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1768558801</pqid></control><display><type>article</type><title>Angular Momentum and Topological Dependence of Kepler's Third Law in the Broucke-Hadjidemetriou-Hénon Family of Periodic Three-Body Orbits</title><source>American Physical Society Journals</source><creator>Jankovic, Marija R ; Dmitrasinovic, V</creator><creatorcontrib>Jankovic, Marija R ; Dmitrasinovic, V</creatorcontrib><description>We use 57 recently found topological satellites of Broucke-Hadjidemetriou-Hénon's periodic orbits with values of the topological exponent k ranging from k=3 to k=58 to plot the angular momentum L as a function of the period T, with both L and T rescaled to energy E=-0.5. Upon plotting L(T/k) we find that all our solutions fall on a curve that is virtually indiscernible by the naked eye from the L(T) curve for nonsatellite solutions. The standard deviation of the satellite data from the sixth-order polynomial fit to the progenitor data is σ=0.13. This regularity supports Hénon's 1976 conjecture that the linearly stable Broucke-Hadjidemetriou-Hénon orbits are also perpetually, or Kol'mogorov-Arnol'd-Moser, stable.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.116.064301</identifier><identifier>PMID: 26918993</identifier><language>eng</language><publisher>United States</publisher><subject>Angular momentum ; Functions (mathematics) ; Orbits ; Plotting ; Polynomials ; Satellites ; Standard deviation ; Topology</subject><ispartof>Physical review letters, 2016-02, Vol.116 (6), p.064301-064301, Article 064301</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-6cef92d440bf756b26676630a14360a67df3e5c046384b68ff66118d2554f15f3</citedby><cites>FETCH-LOGICAL-c458t-6cef92d440bf756b26676630a14360a67df3e5c046384b68ff66118d2554f15f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26918993$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jankovic, Marija R</creatorcontrib><creatorcontrib>Dmitrasinovic, V</creatorcontrib><title>Angular Momentum and Topological Dependence of Kepler's Third Law in the Broucke-Hadjidemetriou-Hénon Family of Periodic Three-Body Orbits</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We use 57 recently found topological satellites of Broucke-Hadjidemetriou-Hénon's periodic orbits with values of the topological exponent k ranging from k=3 to k=58 to plot the angular momentum L as a function of the period T, with both L and T rescaled to energy E=-0.5. Upon plotting L(T/k) we find that all our solutions fall on a curve that is virtually indiscernible by the naked eye from the L(T) curve for nonsatellite solutions. The standard deviation of the satellite data from the sixth-order polynomial fit to the progenitor data is σ=0.13. This regularity supports Hénon's 1976 conjecture that the linearly stable Broucke-Hadjidemetriou-Hénon orbits are also perpetually, or Kol'mogorov-Arnol'd-Moser, stable.</description><subject>Angular momentum</subject><subject>Functions (mathematics)</subject><subject>Orbits</subject><subject>Plotting</subject><subject>Polynomials</subject><subject>Satellites</subject><subject>Standard deviation</subject><subject>Topology</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAURS0EokPhFyrvYJPyHDsvzrItlEEMaoWGdeTEzx2XJA52Appv4Ev4Dn6MjKYgdqyedHTvfYvD2JmAcyFAvr7d7dMn-rahaVoAngMqCeIRWwkoq6wUQj1mKwApsgqgPGHPUroHAJGjfspOcqyEriq5Yj8uhru5M5F_DD0N09xzM1i-DWPowp1vTcff0EiDpaElHhz_QGNH8WXi252Plm_Md-4HPu2IX8Ywt18oWxt77y31NEUf5mz96-cQBn5tet_tDwu3tHDr22UhEmWXwe75TWz8lJ6zJ850iV483FP2-frt9mqdbW7evb-62GStKvSUYUuuyq1S0LiywCZHLBElGKEkgsHSOklFCwqlVg1q5xCF0DYvCuVE4eQpe3XcHWP4OlOa6t6nlrrODBTmVAsNGgrUSvw_WqIuCq3hEMVjtI0hpUiuHqPvTdzXAuqDs_ofZwvA-uhsKZ49_Jibnuzf2h9J8jfYuJY9</recordid><startdate>20160212</startdate><enddate>20160212</enddate><creator>Jankovic, Marija R</creator><creator>Dmitrasinovic, V</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160212</creationdate><title>Angular Momentum and Topological Dependence of Kepler's Third Law in the Broucke-Hadjidemetriou-Hénon Family of Periodic Three-Body Orbits</title><author>Jankovic, Marija R ; Dmitrasinovic, V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-6cef92d440bf756b26676630a14360a67df3e5c046384b68ff66118d2554f15f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Angular momentum</topic><topic>Functions (mathematics)</topic><topic>Orbits</topic><topic>Plotting</topic><topic>Polynomials</topic><topic>Satellites</topic><topic>Standard deviation</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jankovic, Marija R</creatorcontrib><creatorcontrib>Dmitrasinovic, V</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jankovic, Marija R</au><au>Dmitrasinovic, V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Angular Momentum and Topological Dependence of Kepler's Third Law in the Broucke-Hadjidemetriou-Hénon Family of Periodic Three-Body Orbits</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2016-02-12</date><risdate>2016</risdate><volume>116</volume><issue>6</issue><spage>064301</spage><epage>064301</epage><pages>064301-064301</pages><artnum>064301</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We use 57 recently found topological satellites of Broucke-Hadjidemetriou-Hénon's periodic orbits with values of the topological exponent k ranging from k=3 to k=58 to plot the angular momentum L as a function of the period T, with both L and T rescaled to energy E=-0.5. Upon plotting L(T/k) we find that all our solutions fall on a curve that is virtually indiscernible by the naked eye from the L(T) curve for nonsatellite solutions. The standard deviation of the satellite data from the sixth-order polynomial fit to the progenitor data is σ=0.13. This regularity supports Hénon's 1976 conjecture that the linearly stable Broucke-Hadjidemetriou-Hénon orbits are also perpetually, or Kol'mogorov-Arnol'd-Moser, stable.</abstract><cop>United States</cop><pmid>26918993</pmid><doi>10.1103/PhysRevLett.116.064301</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2016-02, Vol.116 (6), p.064301-064301, Article 064301
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_1808056841
source American Physical Society Journals
subjects Angular momentum
Functions (mathematics)
Orbits
Plotting
Polynomials
Satellites
Standard deviation
Topology
title Angular Momentum and Topological Dependence of Kepler's Third Law in the Broucke-Hadjidemetriou-Hénon Family of Periodic Three-Body Orbits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A56%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Angular%20Momentum%20and%20Topological%20Dependence%20of%20Kepler's%20Third%20Law%20in%20the%20Broucke-Hadjidemetriou-H%C3%A9non%20Family%20of%20Periodic%20Three-Body%20Orbits&rft.jtitle=Physical%20review%20letters&rft.au=Jankovic,%20Marija%20R&rft.date=2016-02-12&rft.volume=116&rft.issue=6&rft.spage=064301&rft.epage=064301&rft.pages=064301-064301&rft.artnum=064301&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.116.064301&rft_dat=%3Cproquest_cross%3E1768558801%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1768558801&rft_id=info:pmid/26918993&rfr_iscdi=true