Angular Momentum and Topological Dependence of Kepler's Third Law in the Broucke-Hadjidemetriou-Hénon Family of Periodic Three-Body Orbits
We use 57 recently found topological satellites of Broucke-Hadjidemetriou-Hénon's periodic orbits with values of the topological exponent k ranging from k=3 to k=58 to plot the angular momentum L as a function of the period T, with both L and T rescaled to energy E=-0.5. Upon plotting L(T/k) we...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2016-02, Vol.116 (6), p.064301-064301, Article 064301 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We use 57 recently found topological satellites of Broucke-Hadjidemetriou-Hénon's periodic orbits with values of the topological exponent k ranging from k=3 to k=58 to plot the angular momentum L as a function of the period T, with both L and T rescaled to energy E=-0.5. Upon plotting L(T/k) we find that all our solutions fall on a curve that is virtually indiscernible by the naked eye from the L(T) curve for nonsatellite solutions. The standard deviation of the satellite data from the sixth-order polynomial fit to the progenitor data is σ=0.13. This regularity supports Hénon's 1976 conjecture that the linearly stable Broucke-Hadjidemetriou-Hénon orbits are also perpetually, or Kol'mogorov-Arnol'd-Moser, stable. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.116.064301 |