Orthogonal polynomial approach to estimation of poles of rational functions from data on open curves

This paper deals with the problem of finding poles of rational functions from function values on open curves in the complex plane. For this problem, Nara and Ando recently proposed an algorithm that reduces the problem to a system of linear equations through contour integration. The main aim of this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2015-01, Vol.273, p.326-345
Hauptverfasser: Ito, Shinji, Aishima, Kensuke, Nara, Takaaki, Sugihara, Masaaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper deals with the problem of finding poles of rational functions from function values on open curves in the complex plane. For this problem, Nara and Ando recently proposed an algorithm that reduces the problem to a system of linear equations through contour integration. The main aim of this paper is to analyze and improve this algorithm by giving a new interpretation to the algorithm in terms of orthogonal polynomials. It is demonstrated that the system of linear equations is not always uniquely solvable and that this difficulty can be remedied by doubling the number of the linear equations. Moreover, to cope with discretization errors caused by numerical integration, we introduce new polynomials similar, in spirit, to discrete orthogonal polynomials, which yield an algorithm free from discretization errors.
ISSN:0377-0427
DOI:10.1016/j.cam.2014.05.028