Impact of surface coating and food-mimicking media on nanosilver-protein interaction
The application of silver nanoparticles (AgNPs) in food contact materials has recently become a subject of dispute due to the possible migration of silver in nanoform into foods and beverages. Therefore, the analysis of the interaction of AgNPs with food components, especially proteins, is of high i...
Gespeichert in:
Veröffentlicht in: | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2015-11, Vol.17 (11), p.1-15, Article 428 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The application of silver nanoparticles (AgNPs) in food contact materials has recently become a subject of dispute due to the possible migration of silver in nanoform into foods and beverages. Therefore, the analysis of the interaction of AgNPs with food components, especially proteins, is of high importance in order to increase our knowledge of the behavior of nanoparticles in food matrices. AgPURE™ W10 (20 nm), an industrially applied nanomaterial, was compared with AgNPs of similar size frequently investigated for scientific purposes differing in the surface capping agent (spherical AgNP coated with either PVP or citrate). The interactions of the AgNPs with whey proteins (BSA, α-lactalbumin and β-lactoglobulin) at different pH values (4.2, 7 or 7.4) were investigated using surface plasmon resonance, SDS-PAGE, and asymmetric flow field-flow fractionation. The data obtained by the three different methods correlated well. Besides the nature of the protein and the nanoparticle coating, the environment was shown to affect the interaction significantly. The strongest interaction was obtained with BSA and AgNPs in an acidic environment. Neutral and slightly alkaline conditions however, seemed to prevent the AgNP-protein interaction almost completely. Furthermore, the interaction of whey proteins with AgPURE™ W10 was found to be weaker compared to the interaction with the other two AgNPs under all conditions investigated. |
---|---|
ISSN: | 1388-0764 1572-896X |
DOI: | 10.1007/s11051-015-3235-7 |