Simulating train moving loads in physical model testing of railway infrastructure and its numerical calibration

Ballastless high-speed railways have dynamic performances that are quite different from those of conventional ballasted railways. The essential dynamic characteristics of high-speed railways due to passing train wheels, such as the cyclic effect, moving effect, and speed effect, were put forward and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta geotechnica 2016-04, Vol.11 (2), p.231-242
Hauptverfasser: Jiang, Hongguang, Bian, Xuecheng, Cheng, Chong, Chen, Yunmin, Chen, Renpeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ballastless high-speed railways have dynamic performances that are quite different from those of conventional ballasted railways. The essential dynamic characteristics of high-speed railways due to passing train wheels, such as the cyclic effect, moving effect, and speed effect, were put forward and discussed. A full-scale accelerated railway testing platform for ballastless high-speed railways was proposed in this study. The feasibility of the sequential loading method in simulating train moving loads, and the boundary effect of the proposed physical model of ballastless railways, was investigated using three-dimensional finite element models. A full-scale physical model, 5 m long, 15 m wide, and 6 m high, was then established according to practical engineering design methods. Using a sequential loading system composed of eight high-performance hydraulic actuators, loads of a moving train with highest speed of 360 km/h were simulated. Preliminary experimental results of vibration velocities were presented and compared with field measurements of the Wuguang high-speed railway in China. Results showed that the experimental results coincided with the field measurements, demonstrating that the full-scale accelerated railway testing platform can simulate the process of a moving train and realistically reproduce the dynamic behaviors of ballastless high-speed railways.
ISSN:1861-1125
1861-1133
DOI:10.1007/s11440-014-0327-y