A non-autonomous system leading to cyclic chaotic sets to model physiological rhythms
It is proposed a nonlinear system to model highly complex states of rhythms, whose patterns of activity seem irregular. A non-autonomous system which takes into account both exogenous and endogenous influences. The dynamic behaviors of its stroboscopic map are investigated, by using triangular syste...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and computation 2016-04, Vol.281, p.343-355 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is proposed a nonlinear system to model highly complex states of rhythms, whose patterns of activity seem irregular. A non-autonomous system which takes into account both exogenous and endogenous influences. The dynamic behaviors of its stroboscopic map are investigated, by using triangular systems. The model provides a theoretical framework for addressing cyclic transitions between chaotic sets. The analysis underlines the role of the parameters in the structure and shape of the attractors, so to be in agreement with experimental data. |
---|---|
ISSN: | 0096-3003 1873-5649 |
DOI: | 10.1016/j.amc.2016.01.052 |