Periodic orbits of a perturbed 3-dimensional isotropic oscillator with axial symmetry
We study the periodic orbits of a generalized Yang–Mills Hamiltonian H depending on a parameter β . Playing with the parameter β we are considering extensions of the Contopoulos and of the Yang–Mills Hamiltonians in a 3-dimensional space. This Hamiltonian consists of a 3-dimensional isotropic harmon...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2016, Vol.83 (1-2), p.839-848 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the periodic orbits of a generalized Yang–Mills Hamiltonian
H
depending on a parameter
β
. Playing with the parameter
β
we are considering extensions of the Contopoulos and of the Yang–Mills Hamiltonians in a 3-dimensional space. This Hamiltonian consists of a 3-dimensional isotropic harmonic oscillator plus a homogeneous potential of fourth degree having an axial symmetry, which implies that the third component
N
of the angular momentum is constant. We prove that in each invariant space
H
=
h
>
0
the Hamiltonian system has at least four periodic solutions if either
β
<
0
, or
β
=
5
+
13
; and at least 12 periodic solutions if
β
>
6
and
β
≠
5
+
13
. We also study the linear stability or instability of these periodic solutions. |
---|---|
ISSN: | 0924-090X 1573-269X |
DOI: | 10.1007/s11071-015-2371-z |